Human’s quest for innovation, finding solutions of problems, and upgrading the industrial yield with energy efficient and cost-effective materials has opened the avenues of nanotechnology. Among a variety of nanoparticles, zinc oxide nanoparticles (ZnO) have advantages because of the extraordinary physical and chemical properties. It is one of the cheap materials in cosmetic industry, nanofertilizers, and electrical devices and also a suitable agent for bioimaging and targeted drug and gene delivery and an excellent sensor for detecting ecological pollutants and environmental remediation. Despite inherent toxicity of nanoparticles, synthetic routes are making use of large amount of chemical and stringent reactions conditions that are contributing as environmental contaminants in the form of high energy consumption, heat generation, water consumption, and chemical waste. Further, it is also adding to the innate toxicity of nanoparticles (NPs) that is either entirely ignored or poorly investigated. The current review illustrates a comparison between pollutants and hazards spawned from chemical, physical, and biological methods used for the synthesis of ZnO. Further, the emphasis is on devising eco-friendly techniques for the synthesis of ZnO especially biological methods which are comparatively less hazardous and need to be optimized by controlling the reaction conditions in order to get desired yield and characteristics.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2pbCtBg
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of t...
-
Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take ca...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
C. Julian Chen'Correspondence information about the author C. Julian ChenEmail the author C. Julian Chen, Donald A. Miller DOI: https://...
-
ACS Nano DOI: 10.1021/acsnano.7b00032 from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2lNPpuk via...
-
Abstract Polychlorinated biphenyls (PCBs), a group of 209 congeners that differ in the number and position of chlorines on the biphenyl rin...
-
1 abqls-210rm.html Read the latest Journal of Clinical Neurophysiology - Vol. 37, No. 1, January 2020.eml 2 agx3v-nxz96.html Read the late...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου