from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2qLX93N
via IFTTT
The steady advances in machine learning and accumulation of biomedical data have contributed to the development of numerous computational models that assess the impact of missense variants. Different methods, however, operationalize impact differently. Two common tasks in this context are the prediction of the pathogenicity of variants and the prediction of their effects on a protein's function. These are related but distinct problems and it is unclear whether methods developed for one are optimized for the other. The Critical Assessment of Genome Interpretation (CAGI) experiment provides a means to address this question empirically. To this end, we participated in various protein-specific challenges in CAGI with two objectives in mind. First, to compare the performance of methods in the MutPred family with the state-of-the-art. Second and more importantly, to investigate the applicability of general-purpose pathogenicity predictors to the classification of specific function-altering variants without additional training or calibration. We find that our pathogenicity predictors performed competitively with other methods, outputting score distributions in agreement with experimental outcomes. Overall, we conclude that binary classifiers learned from disease-causing mutations are capable of modeling important aspects of the underlying biology and the alteration of protein function resulting from mutations.
This article is protected by copyright. All rights reserved
The operation has three parts:
Traditional and biologic disease-modifying antirheumatic drugs (DMARDs) are effective medications for the management of rheumatoid arthritis (RA). However, the effects of these medications on immune function raises concern that they may increase long-term cancer risk. The baseline risk for some cancers appears to differ in patients with RA compared to the general population, with the former having an increased risk of lymphoma, lung cancer and renal cancer, but a decreased risk of colorectal and breast cancer. Some DMARDs appear to increase the rate of specific cancer types (such as bladder cancer with cyclophosphamide), but few appear to increase the overall cancer risk. Studying the link between lymphoma and disease severity in RA is complicated because patients with persistently active disease are at increased risk for lymphoma, and disease severity correlates with more intense use of immunosuppressive medications. Overall, cancer risk in patients with RA is slightly above that of the general population, with the increased risk likely secondary to an increased risk of lymphomas in those with high disease activity. Risk mitigation includes management of RA disease activity as well as age- and sex-appropriate cancer screening.
Methylglyoxal (MG) is one of the physiological glucose metabolites formed in living organisms. The data on the influence of MG on different internal systems of eukaryotic cells, including the central signaling pathways, are been discussed in the review. The central signaling pathways are stress-activated and sensitive to the action of reactive oxygen species. Integration of the literary data and authors' results has allowed the conclusion that MG action on cells is multidirectional and is determined by its concentration and the physiological state of the cell. The cellular reaction upon increasing MG concentrations has a phase pattern and can be described by the hormesis concept. It has been hypothesized that MG participates in the formation of the braking regulatory circuit, which modulates the sensitivity of hypothalamus neurons to glucose. It is concluded that MG has a possible role in the functioning of the great biological clock. We propose that the data discussed in this review allow methylglyoxal to be considered a molecule with signal and regulatory functions.
The aim of this study was to investigate the effect of synthetic detergent Merix (Henkel, Kruševac, Serbia), and its particular components—ethoxylated oleyl-cetyl alcohol and sodium tripolyphosphate on the growth and metabolic activity of Penicillium verrucosum. During 19 days of fungal cultivation in Czapek-Dox liquid medium supplemented with or without 0.5% pollutants, the following parameters were observed: pH, the total biomass dry weight, the quantity of free and total organic acids and proteolytic activity. The detergent caused a slight stimulatory (2.41%) effect whereas sodium tripolyphosphate and ethoxylated oleyl-cetyl alcohol provided a slight inhibitory action (0.59 and 2.75%, respectively) on the fungal biomass. The pollutants decreased pH values of the media and the quantity of free organic acids. In contrast, they enhanced the quantity of total organic acids. Proteolytic activity remained nearly unchanged (95.8%) in the presence of detergent and reduced to 80.1% in sodium tripolyphosphate-supplemented medium. In contrast, the enzyme activity sharply increased (260.8%) with ethoxylated oleyl-cetyl alcohol. The obtained results indicate the potential of P. verrucosum in bioremediation of environment contaminated with synthetic detergent taken in high concentration.
This study describes the impact of 5′-end codon modulation on the expression of a heterologous gene, human granulocyte colony stimulating factor (GCSF), in Escherichia coli. Fourteen different constructs (pGCSF-01 to pGCSF-14) carrying single or multiple synonymous substitutions at +2, +3 and further down from +4 to +7 codons, were prepared and their expression was monitored in E. coli BL21 Codon-Plus (DE3) RIPL using a strong T7 lac-promoter based expression system. A single nucleotide change at +2 Thr codon (ACC→ACA) either alone or in combination with +3 Pro codon (CCC/CCT/CCA) resulted in the expression enhancement of an otherwise poorly expressed native-GCSF, to a level that corresponded to 45–50% of the total E. coli BL21 CodonPlus (DE3) RIPL cellular proteins. The differences in GCSF expression amongst different constructs could be attributed to the preferential or non-preferential codon usage, reduced number of G/C nucleotides and the stability of mRNA secondary structure formed near the 5′-end coding region. The expression of GCSF achieved was in the form of biologically inactive inclusion bodies that were solubilized using mild concentration of a non-ionic surfactant and refolded by a simplified, step-dialysis approach. Biological activity of the purified GCSF, assessed in induced neutropenic mice, was similar to the commercially available preparation of the GCSF analog (filgrastim).
Sixteen flor yeast strains from the Magarach Collection of the Microorganisms for Winemaking (Yalta, Crimea), which are used for production of sherry, were analyzed for morphophysiological, cultural, and biochemical properties. Long-term storage did not affect their viability or the preservation of major properties, such as their flor- and aldehyde-forming abilities, and the ability to produce wines with typical sherry properties. Significant variation in the strains was observed mainly in the aldehyde-forming and flor-forming abilities and flor properties. Interdelta typing was shown to be the most informative technique to study the genetic diversity of flor yeast strains. Certain correlations between genetic polymorphisms and the enological properties of the strains were observed. The presence of a 24-bp long deletion in the ITS1 spacer of the ribosomal gene cluster, a typical feature of Spanish flor yeast strains, is correlated with a high level of production of aldehydes and acetales, efficient flor formation, and the ability to produce high quality sherry. The presence of a specific deletion in the promoter of the FLO11 gene appeared to be less informative, since the aldehyde and acetal production and flor formation abilities of such strains were variable. The studies of intraspecies genetic polymorphism by various molecular markers have revealed a high degree of phylogenetic closeness of some yeast flor strains from different geographic regions.
The effect of extra- and intracellular CO2 sources on anaerobic glucose utilization by Escherichia coli strains deficient in the main pathways of mixed acid fermentation and possessing a modified system of glucose transport and phosphorylation was studied. Intracellular CO2 generation in the strains was ensured resulting from the oxidative decarboxylation of pyruvic acid by pyruvate dehydrogenase. Endogenous CO2 formation by pyruvate dehydrogenase stimulated anaerobic glucose consumption by the strains due to the involvement in the fermentation process of condensation reactions between oxaloacetic acid and acetyl-CoA. The availability of an external CO2 source (dissolved in medium sodium bicarbonate) promoted utilization of carbohydrate substrate by favoring the predominant participation in the fermentation of reactions directly dependent on phosphoenolpyruvate carboxylation. The positive effect of the availability of exogenous СО2 was sharply decreased in recombinant strains with the impaired functionality of the reductive branch of the tricarboxylic acid cycle. As a result, intracellular СО2 generation coupled to acetyl-CoA formation promoted anaerobic glucose utilization by cells of the corresponding mutants more markedly than the presence in the medium of dissolved sodium bicarbonate.
The effect of malonate and sedaxane, a compound with the fungicidal effect which act as succinate dehydrogenase inhibitors, on the resistance of etiolated wheat seedlings (Triticum aestivum L.) to osmotic stress caused by 12% PEG 6000 solution, was studied. The presowing treatment of seeds with 0.3 mM sedaxane solution significantly reduced the inhibitory effect of osmotic stress on seedling growth. The protective effect of 10 mM malonate was significant when it was added to the incubation medium of the roots; the effect of preseeding treatment with malonate was less significant. Unlike malonate, malate had no positive effect on seedling growth under osmotic stress. The activity of succinate dehydrogenase and the hydrogen peroxide content decreased in seedlings after the treatment of roots with malonate and sedaxane. Pretreatment with sedaxane and the addition of malonate to the incubation medium of roots prevented the accumulation of a lipid peroxidation product, malondialdehyde, which is caused by osmotic stress, and increased peroxidase activity. It was concluded that the stress-protective effect of sedaxane and malonate on wheat seedlings might be due to the inhibition of succinate dehydrogenase-dependent formation of reactive oxygen species and the prevention of oxidative cell damage.
Two new bacterial biopolymers (exopolysaccharides), ancylan and xylophilan, have been isolated and characterized. The optimal parameters for ancylan and xylophilan production under laboratory conditions were selected. Their physicochemical properties and effects on microorganisms (bacteria, fungi, and ciliates) were studied. The results suggest the potential application of these new exopolysaccharides in medicine and veterinary science.
A new artificial gene encoding human ω-amidase (Nit2) adapted for highly efficient expression in E. coli has been established. A pQE-Nit2 plasmid construct controlled by the T5 promoter has been engineered for its expression. The nit2 gene within the pQE-Nit2 construct has optimized codon usage and an artificial 6His-tag sequence inserted directly after the ATG initiation codon. This tag provides the possibility of single-step purification of a product via metal chelate chromatography. The codon-usage optimization involves the inclusion of several codons of extremely rare occurrence in natural E. coli ORFs within a 30 a.a-long N-terminal region. Other codons included in the N-terminus have moderate occurrence in E. coli. The subsequent sequence of the artificial gene has been composed of the most frequently occurring codons in E. coli. The recombinant producer based on the pQE-Nit2 construct allowed purification of the enzyme with an activity of 6.2 ± 0.2 μmol/min/mg protein, which corresponds to or slightly exceeds the specific activity of rat liver Nit2. The omega-amidase preparation is necessary for the screening of potential inhibitors that can be used as candidate drugs to cure hyperammonemia disorders in liver pathologies and oncological diseases.
Microorganisms that have adapted not only to high concentrations of pollutants but also to environmental conditions develop in autochthonous microbial communities of natural-industrial complexes of gold heap leaching. The biotechnological potential and diversity of autochthonous microbial communities involved in cyanide detoxification was evaluated by the example of a deposit situated in the Sakha (Yakutia) Republic. Under the zoning conditions of the ore heap, the biological component had a greater impact on cyanide destruction than chemical transformation. Metabolically active representatives of a microbial consortium are capable of surviving developed under these conditions. Phylotypes of the genus Serratia and family Alcaligenaceae that are capable of cyanide destruction and are potentially promising for the detoxification of wastes of gold heap leaching were revealed.
A strain of Serratia sp. Ent16 isolated from internal tissues of pea nodule inhibited in vitro growth of the plant pathogens Fusarium oxysporum and Bipolaris sorokiniana and the model strain Rhizobium leguminosarum bv viceae 1078 but had a considerably weaker antagonistic effect on the Rhizobium strain Rh16 from its own nodule. Cells of the Ent16 strain tagged by the gfp gene (the Ent16-gfp strain) were not seen in the pea endorhizosphere when plants were grown in a rich culture medium. The development of symbiosis was favored by plant germination on filter paper. Confocal microscopy showed that individual cells of the Ent16-gfp strain were attached to the outer side of root hair cell walls, while agglomerations of fluorescent bacterial cells were detected in the zone of exoderm of lateral root formation and in root vessels. A series of scanned sections of pea root revealed the presence of the Ent16-gfp strain in lateral root primordia, through which the bacteria penetrated the endorhizosphere.
DNA isolated from a greenhouse soil (Nanjing, Jiangsu Province, China) was suitable for PCR amplification of gene segment coding for the 16S rRNA. Diverse PCR products were characterized by cloning and sequencing, and analysis of bacterial colonies showed the presence over 26 phyla. The most bacteria belonged to Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria and Planctomycetes. Furthermore, after the enrichment procedure of DBP-degrading microorganisms, 4 strains were isolated from the soil sample with di-n-butyl phthalate (DBP) biodegradability, and they were identified to be Rhizobium sp., Streptomyces sp., Pseudomonas sp. and Acinetobacter sp. Analysis of the degradation products by LC-MS led to identification of metabolites of DBP in strain LMB-1 (identified as Rhizobium sp.) which suggests that DBP was degraded through β-oxidation, demethylation, de-esterification and cleavage of aromatic ring.
Flavanone 3β-hydroxylase plays very important role in the biosynthesis of flavonoids. A putative flavanone 3β-hydroxylase gene (Pef3h) from Populus euphratica was cloned and over-expressed in Escherichia coli. Induction performed with 0.1 mM IPTG at 20°C led to localization of PeF3H in the soluble fraction. Recombinant enzyme was purified by Ni-NTA affinity. The optimal activity of PeF3H was revealed at pH 7.6 and 35°C. The purified enzyme was stable over pH range of 7.6–8.8 and had a half-life of 1 h at 50°C. The activity of PeF3H was significantly enhanced in the presence of Fe2+ and Fe3+. The K M and V max for the enzyme using naringenin as substrate were 0.23 mM and 0.069 μmoles mg–1min-1, respectively. The K m and V max for eriodictyol were 0.18 mM and 0.013 μmoles mg–1min–1, respectively. The optimal conditions for naringenin bioconversion in dihydrokaempferol were obtained: OD600 of 3.5 for cell concentration, 0.1 mM IPTG, 5 mM α-ketoglutaric acid and 20°C. Under the optimal conditions, naringenin (0.2 g/L) was transformed into 0.18 g/L dihydrokaempferol within 24 h by the recombinant E. coli with a corresponding molar conversion of 88%. Thus, this study provides a promising flavanone 3β-hydroxylase that may be used in biosynthetic applications.
The mediators ferrocene, 1,1'-dimethylferrocene, ferrocene carboxaldehyde, ferrocene acetonitrile, neutral red, 2,6-dichlorophenolindophenol, thionine, methyl blue, and potassium ferricyanide were used in combination with Debaryomyces hansenii yeast cells to create a biosensor receptor for biochemical oxygen demand (BOD) assays. In this eukaryote, ferrocene and neutral red were observed to efficiently transfer electrons. The biosensor based on ferrocene was characterized by long-term stability (39 days) and a wide range of substrate specificity. The lower detected concentration boundary was 25.2 mg O2/dm3. A high correlation (R = 0.9971) was observed between the results obtained with water samples by this approach and the standard method. This is the first attempt to create a combination of yeast cells and a mediator. The biosensor can be employed for further research on the possibilities of its conventional use.
We examined the accumulation of phenylethanol, geraniol, citronellol, and nerol by Eremothecium ashbyi Guillermond 1935 strains characterized by different levels of riboflavin synthesis. There was a significant positive correlation between riboflavin and monoterpene alcohol biosyntheses (Spearman's correlation coefficients = 0.81–1.00, p ≤ 0.05). Strain accumulation of the main secondary metabolites such as vitamin B2 and aroma forming compounds was found to be accompanied with an increase in the lipid droplet quantities and the vacuole filling with lipophilic compounds. These phenomena may be used as an indirect measure of riboflavinogenesis intensity and essential oil synthesis.
The ability of Bacillus subtilis Cohn and Bacillus thuringiensis Berliner to induce systemic resistance in wheat plants to the casual agent of Septoria nodorum Berk., blotch has been studied. It has been shown that strains of Bacillus ssp. that possess the capacity for endophytic survival have antagonistic activity against this pathogen in vitro. A reduction of the degree of Septoria nodorum blotch development on wheat leaves under the influence of Bacillus spp. was accompanied by the suppression of catalase activity, an increase in peroxidase activity and H2O2 content, and expression of defence related genes such us PR-1, PR-6, and PR-9. It has been shown that B. subtilis 26 D induces expression levels of wheat pathogenesis-related (PR) genes which marks a SA-dependent pathway of sustainable development and that B. thuringiensis V-5689 and V-6066 induces a JA/ET-dependent pathway. These results suggest that these strain Bacillus spp. promotes the formation of wheat plant resistance to S. nodorum through systemic activation of the plant defense system. The designed bacterial consortium formed a complex biological response in wheat plants infected phytopathogen.
A previously healthy 29-year-old Mexican woman presented to an emergency department with transient hemiparaesthesias and dysarthria. There was no evidence of stroke on cross-sectional imaging of the head, and she was discharged without a clear diagnosis. Two days later, she returned with acute abdominal pain. Abdominal imaging revealed complete occlusion of the right renal artery, prompting emergency embolectomy. Following the procedure, she developed acute haemoptysis, dyspnoea and hypoxaemia. Chest imaging demonstrated evidence of pulmonary venous hypertension. Cardiac auscultation revealed an opening snap followed by a diastolic murmur with presystolic accentuation. These sounds were better appreciated in combination with phonocardiography, a technique supplanted by echocardiography in the 1970s1 that visualised heart sounds (video 1). An echocardiogram confirmed the presence of mitral stenosis (MS), unifying the syndrome of embolic phenomena, haemoptysis and pulmonary hypertension. She underwent successful mitral valve replacement and has since returned to normal...
Scimitar syndrome is the constellation of malformations including an abnormal venous drainage of the right lung into the inferior vena cava, associated with the right lung and systemic supply to the right lung. The anomalous vein looks like the curved, Turkish sword (scimitar), hence the name.
The adult form of scimitar syndrome is rare, and it is usually an incidental diagnosis based on the characteristic finding on radiological imaging since the patients are usually asymptomatic or with minimal symptoms.
Our patient presented with a rare presentation of scimitar syndrome, which is tachyarrhythmia (sinus tachycardia, with episodes of supraventricular tachycardia). The diagnosis of scimitar syndrome was made based on the typical radiological finding of the anomalous venous drainage on CT angiography. Our patient does not have the full spectrum of the scimitar syndrome; therefore, she did not suffer from the usual complication (pulmonary hypertension). She was treated with ablation without surgical intervention.
Oesophageal ultrasound with bronchoscope (EUS-B) is designed to evaluate mediastinal structures. We describe a case of a 78-year-old woman who presented with altered mental status for 2 weeks. CT head revealed a subacute infarct in the right middle cerebral artery distribution. She was also found to have a lung mass on chest imaging. EUS-B-guided fine needle aspiration demonstrated the presence of adenocarcinoma in station 7 lymph node and in the mass. Immunohistochemistry confirmed it to be a lung primary as the Thyroid Transcription Factor-1 (TTF-1) was strongly positive. During the procedure, the cardiac valves were evaluated, and a mitral valve vegetation was noted. Formal echocardiography confirmed the presence of the vegetation. During hospital stay, the patient developed fever. Her blood cultures grew oxacillin-resistant Staphylococcus aureus. She was subsequently treated for infective endocarditis. We suggest that the use of EUS-B to routinely scan adjacent structures during a procedure may help obtain additional clinical information that may be critical to patient management.
A 67-year-old woman with history of severe rheumatoid arthritis and use of multiple biologics including infliximab, tocilizumab and abatacept presented with fever of 39.1°C and severe pancytopenia (white blood cell count (WBC)=1.0x109/L, absolute neutrophil count (ANC)=0.55x109/L, haemoglobin=8.7 g/dL, platelets=46x109/L). As part of the pancytopenia evaluation, imaging (CT of the chest, abdomen and pelvis) showed diffuse lymphadenopathy. Further evaluation revealed an elevated ferritin (8564 ng/mL), hypofibrinogenaemia (fibrinogen=95 mg/dL), elevated triglycerides (399 mg/dL) and a soluble interleukin 2 receptor level of 41 167 units/mL, satisfying diagnostic criteria for haemophagocytic lymphohistiocytosis (HLH). A subsequent bone marrow biopsy also revealed morphological evidence of haemophagocytosis (figure 1A), in addition to a population of very large and atypical mononuclear cells with markedly irregular, folded nuclear contours, prominent nucleoli and moderate amounts of cytoplasm (figure 1B,C). A similar large cell infiltrate was identified in the left axillary lymph node, causing complete effacement of nodal architecture (figure...
We present an 8-year-old male child admitted with cough and high-grade fever for 7 days and respiratory difficulty for 2 days. There was a history of blood transfusion at 2 years of age during a respiratory illness. The child was anaemic, tachycardic, tachypnoeic and hypoxic at presentation. Chest examination revealed equal air entry with fine crackles bilaterally. Blood reports were suggestive of anaemia (haemoglobin 6.5 g/dL), leucocytosis and high C reactive protein levels. Chest radiograph revealed bilateral air space opacities involving diffuse lung fields, right more than left. Relevant microbiological workup was negative. Based on the clinical scenario and investigations, a provisional diagnosis of pulmonary haemosiderosis was kept. The patient was started on intravenous pulse methylprednisolone. Fibre-optic bronchoscopy was done following recovery from the acute event. Bronchoalveolar lavage demonstrated a significant number of haemosiderin-laden macrophages confirming pulmonary haemosiderosis.
Thrombotic microangiopathy (TMA) occurring after acute pancreatitis is rarely described. Without prompt intervention, TMA can be, and often is, lethal, so prompt recognition is important. Here, we present a case of a 61-year-old woman with a history of alcohol misuse who presented with epigastric pain, nausea and vomiting after binge drinking. Elevated serum lipase and imaging were suggestive of acute-on-chronic pancreatitis. Although the patient’s symptoms of acute pancreatitis subsided, her anaemia, thrombocytopenia and acute kidney injury worsened. A peripheral blood smear revealed schistocytes, prompting suspicion for TMA. Therapeutic plasma exchange (TPE) was promptly initiated and she completed 10 TPE sessions that improved her anaemia and serum creatinine and resolved the thrombocytopenia. Since TPE was effective and the ADAMTS13 assay revealed 55% activity in the absence of anti-ADAMTS13 IgG prior to initiation of therapy, a confident diagnosis of TMA caused by acute pancreatitis was made. There was no evidence of relapse 2 years later.
The quadratus lumborum (QL) block facilitates the administration of anaesthesia to the anterior abdominal wall. The use of ultrasound (US) improves the accuracy of the QL block and reduces the risk of adverse events. Electromyography (EMG) in combination with US for muscle plane blocks has not been described previously. We postulated that the addition of EMG-guided needle positioning might assist the execution of this block. This case report describes the first use of combined needle EMG and US to carry out a QL block performed for postoperative analgesia following an open appendicectomy.
A 73-year-old woman with hypertension and atrial fibrillation presented with head and neck injury after mechanical fall. During workup, chest X-ray anteroposterior view (figure 1) revealed a rounded opacity silhouetting the left heart border and hilum. Subsequent contrast-enhanced CT of the chest showed single, 6.4 cm, rounded, well-defined, thin-walled, non-enhanced, low attenuated (–20 and 20 Hounsfield Unit) and homogenous cyst-like structure at the left mediastinum connected to pericardial recesses and not attached to adjacent structures (figure 2A–C). Transthoracic echocardiogram ruled out left ventricular aneurysm, aortic aneurysm, solid tumour and outflow tracts obstruction. Although bronchogenic cyst, oesophageal duplication cyst, thymic tumour and mediastinal lymphoma were considered as possible differentials, radiological features such as CT appearance, homogenous attenuation, unrelated to the underlying structures favoured pericardial cyst. Since patient was asymptomatic, patient and family member were unwilling to undergo surgical removal and pathological confirmation. Follow-up with non-enhanced CT of...
Many studies have shown that rhythmic interlimb coordination involves perception of the coupled limb movements, and different sensory modalities can be used. Using visual displays to inform the coupled bimanual movement, novel bimanual coordination patterns can be learned with practice. A recent study showed that similar learning occurred without vision when a coach provided manual guidance during practice. The information provided via the two different modalities may be same (amodal) or different (modality specific). If it is different, then learning with both is a dual task, and one source of information might be used in preference to the other in performing the task when both are available. In the current study, participants learned a novel 90° bimanual coordination pattern without or with visual information in addition to kinesthesis. In posttest, all participants were tested without and with visual information in addition to kinesthesis. When tested with visual information, all participants exhibited performance that was significantly improved by practice. When tested without visual information, participants who practiced using only kinesthetic information showed improvement, but those who practiced with visual information in addition showed remarkably less improvement. The results indicate that (1) the information is not amodal, (2) use of a single type of information was preferred, and (3) the preferred information was visual. We also hypothesized that older participants might be more likely to acquire dual task performance given their greater experience of the two sensory modes in combination, but results were replicated with both 20- and 50-year-olds.
Recent research has suggested that bilinguals show advantages over monolinguals in visual search tasks, although these findings have been derived from global behavioral measures of accuracy and response times. In the present study we sought to explore the bilingual advantage by using more sensitive eyetracking techniques across three visual search experiments. These spatially and temporally fine-grained measures allowed us to carefully investigate any nuanced attentional differences between bilinguals and monolinguals. Bilingual and monolingual participants completed visual search tasks that varied in difficulty. The experiments required participants to make careful discriminations in order to detect target Landolt Cs among similar distractors. In Experiment 1, participants performed both feature and conjunction search. In Experiments 2 and 3, participants performed visual search while making different types of speeded discriminations, after either locating the target or mentally updating a constantly changing target. The results across all experiments revealed that bilinguals and monolinguals were equally efficient at guiding attention and generating responses. These findings suggest that the bilingual advantage does not reflect a general benefit in attentional guidance, but could reflect more efficient guidance only under specific task demands.
Human neutrophil elastase impacts on atherosclerotic plaque stability by inducing apoptosis in endothelial cells. Our aim was to investigate the proapoptotic mechanism of elastase on endothelial cells and to evaluate the presence of elastase in human plaque material. Human endothelial cells were treated with purified human neutrophil elastase. Apoptosis was assayed by capsase-3/7 activation, TUNEL, and sub-G1 assay. Activation of unfolded protein response (UPR) effector molecules binding Ig protein, soluble X-binding protein-1, protein kinase RNA-like ER kinase (PERK), and C/EBP-homologous protein (CHOP) was analyzed by RT-PCR, immunocytochemistry, and Western blot. Genetic silencing of CHOP was achieved by small interfering RNA. Elastase induces autophagic–apoptotic forms of endothelial cell death in a time- and dose-dependent manner, in conjunction with a significant increase in phosphorylation/expression of the canonical UPR-activation markers PERK and CHOP. By using CHOP knockdown, we identified CHOP as a key mediator of elastase-induced endothelial cell death. Immunohistochemical analysis of human rupture-prone plaque specimens confirmed the presence of elastase and colocalization with apoptosis. We have demonstrated for the first time that the PERK-CHOP branch of the UPR is causally involved in elastase-induced apoptosis of endothelial cells. Ex vivo analysis of human rupture-prone plaques confirmed the presence of elastase and its colocalization with markers of apoptosis. This novel role of elastase underlines the potential of combined targeting of elastase and endoplasmic reticulum stress in the prevention of plaque progression and cardiovascular events.—Grechowa, I., Horke, S., Wallrath, A., Vahl, C.-F., Dorweiler, B. Human neutrophil elastase induces endothelial cell apoptosis by activating the PERK-CHOP branch of the unfolded protein response.
IL-6 is a pleiotropic cytokine with a wide range of biologic effects. In response to prolonged exercise, IL-6 is synthesized by contracting skeletal muscle and released into circulation. Circulating IL-6 is thought to maintain energy status during exercise by acting as an energy sensor for contracting muscle and stimulating glucose production. If tissue damage occurs, immune cells infiltrate and secrete cytokines, including IL-6, to repair skeletal muscle damage. With adequate rest and nutrition, the IL-6 response to exercise is attenuated as skeletal muscle adapts to training. However, sustained elevations in IL-6 due to repeated bouts of unaccustomed activities or prolonged exercise with limited rest may result in untoward physiologic effects, such as accelerated muscle proteolysis and diminished nutrient absorption, and may impair normal adaptive responses to training. Recent intervention studies have explored the role of mixed meals or carbohydrate, protein, -3 fatty acid, or antioxidant supplementation in mitigating exercise-induced increases in IL-6. Emerging evidence suggests that sufficient energy intake before exercise is an important factor in attenuating exercise-induced IL-6 by maintaining muscle glycogen. We detail various nutritional interventions that may affect the IL-6 response to exercise in healthy human adults and provide recommendations for future research exploring the role of IL-6 in the adaptive response to exercise.—Hennigar, S. R., McClung, J. P., Pasiakos, S. M. Nutritional interventions and the IL-6 response to exercise.
<span style="margin: 0px; font-family: 'New times rome',serif;">Prostate cancer is one of the leading causes of cancer death in US men. There is an unmet need to identify modifiable risk factors for prostate cancer survival. Experimental studies have suggested that nonsteroidal anti-inflammatory drugs (NSAIDs) may improve prostate cancer survival through anti-thrombotic and anti-inflammation mechanisms. Results from previous observational studies have been equivocal, and few have assessed whether an etiologically relevant time window of exposure exists. We sampled prostate cancer cases from two large US prospective cohorts-NIH-AARP Diet and Health Study and PLCO Cancer Screening Trial-to investigate whether pre- and post-diagnostic aspirin and non-aspirin NSAID use were associated with prostate cancer-specific and all-cause mortality. Cox proportional hazards regression models estimated hazard ratios (HRs) and 95% confidence intervals (CIs). Study-specific results were meta-analyzed using fixed-effects models. Pre- and post-diagnostic aspirin or non-aspirin NSAID use were not statistically significantly associated with prostate cancer-specific mortality. However, occasional (less than daily) and daily aspirin users five years or more before prostate cancer diagnosis had 18% (HR=0.82; 95%CI=0.75 to 0.90) and 15% (HR=0.85; 95%CI=0.77 to 0.94) reduced all-cause mortality versus nonusers. Similarly, post-diagnostic occasional and daily aspirin use were associated with 17% (HR=0.83; 95%CI=0.72 to 0.95) and 25% (HR=0.75; 95%CI=0.66 to 0.86) reduced all-cause mortality, independent of pre-diagnostic aspirin use. This study suggests that aspirin or non-aspirin NSAIDs are not associated with prostate cancer survival. However, aspirin use both before and after prostate cancer diagnosis was associated with longer overall survival, highlighting the importance of comorbidity prevention among prostate cancer survivors. </span>
Lynch syndrome (LS) is a highly penetrant inherited cancer predisposition syndrome accounting for approximately 1000 cases of colorectal cancer (CRC) in the UK annually. LS is characterised by autosomal dominant inheritance and germline mutations in DNA mismatch repair genes. The penetrance is highly variable and the reasons for this have not been fully elucidated. This study investigates whether low penetrance genetic risk factors may result in phenotype modification in LS patients. To conduct a systematic literature review and meta-analysis to assess the association between low penetrance genetic risk modifiers and CRC in LS patients. A systematic review was conducted of the PubMed and HuGENet databases. Eligibility of studies was determined by pre-defined criteria. Included studies were analysed via the per-allele model and assessed by pooled odds ratios and establishing 95% confidence intervals. Study heterogeneity was assessed via Cochrane's Q statistic and I2 values. Publication bias was evaluated with funnel plots. Subgroup analysis was conducted on gender. Statistical software used was the Metafor package for the R programme version 3.1.3. Sixty-four polymorphisms were identified and sufficient data was available for analysis of ten polymorphisms, with between 279 and 1768 CRC cases per polymorphism. None demonstrated association with CRC risk in LS patients. However in sub-group analysis the polymorphism rs16892766 (8q23.3) was significant in males (OR 1.53, 95% CI 1.12–2.10). The variable phenotype presentation of the disease still remains largely unexplained, and further investigation is warranted. Other factors may also be influencing the high variability of the disease, such as environmental factors, copy number variants and epigenetic alterations. Investigation into these areas is needed as well as larger and more definitive studies of the polymorphisms analysed in this study.