Publication date: Available online 5 May 2017
Source:Biochimica et Biophysica Acta (BBA) - General Subjects
Author(s): Christina Z. Chung, Lauren E. Seidl, Mitchell R. Mann, Ilka U. Heinemann
BackgroundThe regulation of active microRNAs and maturation of messenger RNAs that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3’ end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis.Scope of ReviewThis review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets.Major ConclusionsThe biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity.General SignificanceUnderstanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for alterations in the transcriptome, proteome, and downstream cellular processes. Genetic, biochemical and clinical data suggest TNTases are potent targets for chemotherapeutics and have been exploited for RNA labeling applications.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2p5LcWd
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Kenaf is a multipurpose crop, but a lack of genetic information hinders genetic and molecular research. In this study, we aimed t...
-
As demonstrated by the market reactions to downgrades of various sovereign credit ratings in 2011, the credit rating agencies occupy an impo...
-
Spindle cell/pleomorphic lipoma is an uncommonly encountered benign neoplasm that is usually found in the subcutaneous tissues. Rare cases r...
-
Lichtenstein intervention is currently the classic model of the regulated treatment of inguinal hernias by direct local approach. This “tens...
-
Publication date: Available online 10 February 2017 Source: International Journal of Oral and Maxillofacial Surgery Author(s): S. Sugiyama...
-
ORIGINAL ARTICLES Cyclooxygenase-2 and estrogen receptor-β as possible therapeutic targets in desmoid tumors p. 47 Rasha A Khairy DOI :10....
-
New magnetic resonance (MR) molecular imaging techniques offer the potential for non-invasive, simultaneous quantification of metabolic and ...
-
The parotid gland harbors 85% of all salivary gland neoplasms. Though the majority of tumors are benign, complete surgical resection remains...
-
Facial Nerve Clinic to Provide Comprehensive Personalized Care Newswise (press release) The program will treat patients with facial n...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου