Publication date: Available online 4 May 2017
Source:Biochimica et Biophysica Acta (BBA) - General Subjects
Author(s): Sakineh Kazemi Noureini, Hosein Esmaeili, Farzane Abachi, Soraia Khiali, Barira Islam, Martyna Kuta, Ali A. Saboury, Marcin Hoffmann, Jiri Sponer, Gary Parkinson, Shozeb Haider
BackgroundNatural bioproducts are invaluable resources in drug discovery. Isoquinoline alkaloids of Chelidonium majus constitute a structurally diverse family of natural products that are of great interest, one of them being their selectivity for human telomeric G-quadruplex structure and telomerase inhibition.MethodsThe study focuses on the mechanism of telomerase inhibition by stabilization of telomeric G-quadruplex structures by berberine, chelerythrine, chelidonine, sanguinarine and papaverine. Telomerase activity and mRNA levels of hTERT were estimated using quantitative telomere repeat amplification protocol and qPCR, in MCF-7 cells treated with different groups of alkaloids. The selectivity of the main isoquinoline alkaloids of Chelidonium majus towards telomeric G-quadruplex forming sequences were explored using a sensitive modified thermal FRET-melting measurement in the presence of the complementary oligonucleotide CT22. We assessed and monitored G-quadruplex topologies using circular dichroism (CD) methods, and compared spectra to previously well-characterized motifs, either alone or in the presence of the alkaloids, Molecular modeling was performed to rationalize ligand binding to the G-quadruplex structure.ResultsThe results highlight strong inhibitory effects of chelerythrine, sanguinarine and berberine on telomerase activity, most likely through substrate sequestration. These isoquinoline alkaloids interacted strongly with telomeric sequence G-quadruplex. In comparison, chelidonine and papaverine had no significant interaction with the telomeric quadruplex, while they strongly inhibited telomerase at transcription level of hTERT. Altogether, all of the studied alkaloids showed various levels and mechanisms of telomerase inhibition.ConclusionsWe report on a comparative study of anti-telomerase activity of the isoquinoline alkaloids of Chelidonium majus. Chelerythrine was most effective in inhibiting telomerase activity by substrate sequesteration through G-quadruplex stabilization.General SignificanceUnderstanding structural and molecular mechanisms of anti-cancer agents can help in developing new and more potent drugs with fewer side effects. Isoquinolines are the most biologically active agents from Chelidonium majus, which have shown to be telomeric G-quadruplex stabilizers and potent telomerase inhibitors.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2piZ6Ab
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Treatment effectiveness holds considerable importance in the association between service quality and satisfaction in medical service studies...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jCvX3K via IFTTT
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2p08wUI via IFTTT
-
Background. Transseptal puncture (TSP) can be challenging. We compared safety and efficacy of a modified TSP technique (“mosquito” technique...
-
FS Teni, AS Surur, A Hailemariam, A Aye, G Mitiku, AE Gurmu, B Tessema Annals of Medical and Health Sciences Research 2015 5(6):454-460 ...
-
Abstract Purpose Gastric cancer (GC) is one of the fatal malignancies worldwide with high occurrences but poor outcomes. bFGF has been s...
-
We provide excellent essay writing service 24/7. Enjoy proficient essay writing and custom writing services provided by professional academi...
-
Daily Mail Sarah was diagnosed with the cancer that killed Steve Jobs Daily Mail The symptoms Sarah Smith experienced on and off for...
-
Keratoconus (KC) is a corneal thinning disorder that leads to loss of visual acuity through ectasia, opacity, and irregular astigmatism. It ...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου