Τετάρτη 25 Ιανουαρίου 2017

Heat Dissipation of Resonant Absorption in Metal Nanoparticle-Polymer Films Described at Particle Separation Near Resonant Wavelength

Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. The present work evaluates heat dissipated from power absorbed by resonant gold (Au) nanoparticles (NP) with negligible Rayleigh scattering cross sections randomly dispersed in polydimethylsiloxane (PDMS) films. Finite element analysis (FEA) of heat transport was coordinated with characterization of resonant absorption by Mie theory and coupled dipole approximation (CDA). At AuNP particle separation greater than resonant wavelength, correspondence was observed between measured and CDA-predicted optical absorption and FEA-derived power dissipation. At AuNP particle separation less than resonant wavelength, measured extinction increased relative to predicted values, while FEA-derived power dissipation remained comparable to CDA-predicted power absorption before lagging observed extinguished power at higher AuNP content and resulting particle separation. Effects of isolated particles, for example, scattering, and particle-particle interactions, for example, multiple scattering, aggregation on observed optothermal activity were evaluated. These complementary approaches to distinguish contributions to resonant heat dissipation from isolated particle absorption and interparticle interactions support design and adaptive control of thermoplasmonic materials for a variety of implementations.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2k68Ez5
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις