Παρασκευή 12 Ιανουαρίου 2018

Gadolinium Retention, Brain T1 Hyperintensity, and Endogenous Metals: A Comparative Study of Macrocyclic Versus Linear Gadolinium Chelates in Renally Sensitized Rats

Objectives This preclinical study was designed to compare gadolinium (Gd) brain uptake after repeated injections of a macrocyclic Gd-based contrast agent (GBCA) (gadoterate meglumine) or 2 linear GBCAs (L-GBCAs) (gadobenate dimeglumine or gadodiamide) on a translational model of moderate renal impairment in rats. Methods The study was carried out in subtotally nephrectomized rats. Animals received 4 intravenous injections per week of GBCA (gadoterate meglumine, gadobenate dimeglumine, or gadodiamide) for 5 weeks, resulting in a cumulative dose of 12 mmol/kg, followed by a 1-month injection-free period. T1 hyperintensity in the deep cerebellar nuclei (DCNs) was investigated, and brain structures were carefully dissected to determine elemental Gd, iron (Fe), copper (Cu), and zinc (Zn) distribution by mass spectrometry. Urinary excretion of endogenous metals was also investigated soon after GBCA administration and several days later in order to assess a potential transmetalation phenomenon. Results Unlike gadoterate, repeated injections of L-GBCAs gadobenate and gadodiamide both induced T1 hyperintensity in the DCNs. Fine dissection of cerebral and cerebellar structures demonstrated very low levels or absence of Gd after repeated injections of gadoterate, in contrast to the two L-GBCAs, for which the highest total Gd concentration was demonstrated in the DCNs (Gd concentration in DCNs after 4.5 weeks of injection-free period: 27.1 ± 6.5 nmol/g for gadodiamide [P

from Imaging via alkiviadis.1961 on Inoreader http://ift.tt/2D6GLRP

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις