Lipid membranes act as catalysts for protein folding. Both alpha-helical and beta-sheet structures can be induced by the interaction of peptides or proteins with lipid surfaces. Melittin, the main component of bee venom, is a particularly well-studied example for the membrane-induced random coil-to-alpha-helix transition. Melittin in water adopts essentially a random coil conformation. The cationic amphipathic molecule has a high affinity for neutral and anionic lipid membranes and exhibits approximately 50-65% alpha-helix conformation in the membrane-bound state. At higher melittin concentrations, the peptide forms aggregates or pores in the membrane. In spite of the long-standing interest in melittin-lipid interactions, no systematic thermodynamic study is available. This is probably caused by the complexity of the binding process. Melittin binding to lipid vesicles is fast and occurs within milliseconds, but the binding process involves at least four steps, namely, (i) the electrostatic attraction of the cationic peptide to an anionic membrane surface, (ii) the hydrophobic insertion into the lipid membrane, (iii) the conformational change from random coil to alpha-helix, and (iv) peptide aggregation in the lipid phase. We have combined microelectrophoresis (measurement of the zeta potential), isothermal titration calorimetry, and circular dichroism spectroscopy to provide a thermodynamic analysis of the individual binding steps. We have compared melittin with a synthetic analogue, [D]-V(5,8),I(17),K(21)-melittin, for which alpha-helix formation is suppressed and replaced by beta-structure formation. The comparison reveals that the thermodynamic parameters for the membrane-induced alpha-helix formation of melittin are identical to those observed earlier for other peptides with an enthalpy h(helix) of -0.7 kcal/mol and a free energy g(helix) of -0.2 kcal/mol per peptide residue. These thermodynamic parameters hence appear to be of general validity for lipid-induced membrane folding. As g(helix) is negative, it further follows that helix formation leads to an enhanced membrane binding for the peptides or proteins involved. In this study, melittin binds by approximately 2 orders of magnitude better to the lipid membrane than [D]-V(5,8),I(17),K(21)-melittin which cannot form an alpha-helix. We also found conditions under which the isothermal titration experiment reports only the aggregation process. Melittin aggregation is an entropy-driven process with an endothermic heat of reaction (DeltaH(agg)) of approximately 2 kcal/mol and an aggregation constant of 20-40 M(-1).
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2ieZ3Hn
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Recent updating of the World Health Organization (WHO) classification of central nervous system (CNS) tumors in 2016 demonstrates...
-
In our previous work, the dichloromethane-methanol (1:1 v/v) extract, fractions and isolated compounds from Polyscias fulva stem bark showed...
-
Background Agricultural work can expose workers to increased risk of heat strain and volume depletion due to repeated exposures to high ambi...
-
Cincinnati.com No fooling; go get your head (and neck) examined for free Cincinnati.com Thursday, get your head examined. UC Health ...
-
Nursing students' perceptions of a video-based serious game's educational value: A pilot study. Nurse Educ Today. 2017 Dec 28;...
-
Anaphora is a rhetorical term for the repetition of a word or phrase at the beginning of successive clauses or verses. from #AlexandrosSfa...
-
Abstract We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events an...
-
Method combines radiomics with three - compartment breast image analysis of dual - energy mammography (Source: The Doctors Lounge - Oncology...
-
Cone beam computerized tomography (CBCT) has been widely used in dental implanting. However, the local hospitals usually don’t have access t...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου