The paper investigates the exponential stability of a linear system of difference equations with variable delays , , where , is a constant square matrix, are square matrices, , and for an . New criteria for exponential stability are derived using the method of Lyapunov functions and formulated in terms of the norms of matrices of linear terms and matrices solving an auxiliary Lyapunov equation. An exponential-type estimate of the norm of solutions is given as well. The efficiency of the derived criteria is numerically demonstrated by examples and their relations to the well-known results are discussed.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2B4I8eg
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives Greece is one of the leading tobacco-producing countries in European Union, and every year over 19 000 Greeks die from tobacco-at...
-
Objectives Drug interactions, poor adherence to medication and high-risk sexual behaviour may occur in individuals with HIV using recreation...
-
Abstract Background Mature T-cell and natural killer (NK)-cell lymphomas compose a heterogeneous group of non-Hodgkin lymphomas, and ext...
-
Introduction Multimorbidity (MM) refers to the coexistence of two or more chronic conditions within one person, where no one condition is co...
-
Objective To describe the prevalence and severity of diabetic retinopathy (DR) and sight-threatening DR (STDR) among Chinese adults with dia...
-
Related Articles Three job stress models and their relationship with musculoskeletal pain in blue- and white-collar workers. J Psycho...
-
<span class="paragraphSection"><div class="boxTitle">Abstract</div>Masked hypertension (MHT), defined ...
-
Background Hepatitis B virus (HBV) transmission is known to occur through direct contact with infected blood. There has been some suspicion ...
-
In Rwanda, the prevalence of viral hepatitis (HCV) is poorly understood. The current study investigated the prevalence and risk factors of H...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου