Τρίτη 20 Ιουνίου 2017

Spectroscopic and chemical reactivity analysis of D-Myo-Inositol using quantum chemical approach and its experimental verification

Abstract

This paper describes the spectroscopic ( \(^1\hbox {H}\) and \(^{13}\hbox {C}\) NMR, FT-IR and UV–Visible), chemical, nonlinear optical and thermodynamic properties of D-Myo-Inositol using quantum chemical technique and its experimental verification. The structural parameters of the compound are determined from the optimized geometry by B3LYP method with \(6\text {-}311{+}{+}\hbox {G}\) (d,p) basis set. It was found that the optimized parameters thus obtained are almost in agreement with the experimental ones. A detailed interpretation of the infrared spectra of D-Myo-Inositol is also reported in the present work. After optimization, the proton and carbon NMR chemical shifts of the studied compound are calculated using GIAO and \(6\text {-}311{+}{+}\hbox {G}\) (d,p) basis set. The search of organic materials with improved charge transfer properties requires precise quantum chemical calculations of space-charge density distribution, state and transition dipole moments and HOMO–LUMO states. The nature of the transitions in the observed UV–Visible spectrum of the compound has been studied by the time-dependent density functional theory (TD-DFT). The global reactivity descriptors like chemical potential, electronegativity, hardness, softness and electrophilicity index, have been calculated using DFT. The thermodynamic calculation related to the title compound was also performed at B3LYP \(/\) \(6\text {-}311{+}{+}\hbox {G}\) (d,p) level of theory. The standard statistical thermodynamic functions like heat capacity at constant pressure, entropy and enthalpy change were obtained from the theoretical harmonic frequencies of the optimized molecule. It is observed that the values of heat capacity, entropy and enthalpy increase with increase in temperature from 100 to 1000 K, which is attributed to the enhancement of molecular vibration with the increase in temperature.



http://ift.tt/2tHZdan

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις