Τρίτη 20 Ιουνίου 2017

Physicochemical properties of liquid natural rubber bearing fluoro groups for hydrophobic surfaces

Abstract

The modification of liquid natural rubber (LNR) has attracted interests among chemists as it brings improvements to several of its properties and widens its application to various fields. LNR can be modified into fluorinated LNR (F-LNR) which is of interest to industries due to its remarkable properties, including low surface energies, high thermal stabilities, together with its significant hydrophobic characters. In this work, a new route to prepare fluorinated rubber was presented. Hydroxylated LNR (OH-LNR) was initially synthesized in good yield via oxidation in the presence of tungsten complex catalyst and acetic acid with hydrogen peroxide as an oxidant. The optimum hydroxyl content of 57.0% was obtained within 6 h reaction time at 90 °C. In the second step, the esterification of OH-LNR using pentadecafluorooctanoyl chloride (PDFOC) under mild conditions was conducted, leading to LNR bearing fluoro groups in the side chain of LNR (F-LNR). ATR-FTIR spectroscopy was used to elucidate the structure and determine any changes in the functional groups that may have been induced during the reaction. 1H NMR spectroscopy was employed to reveal that a high fluorine content of 48.6% was obtained using 3:1 molar ratio of OH-LNR:PDFOC for 8 h at 50 °C. The microstructure of F-LNR was further analyzed using 19F NMR and 13C NMR spectroscopies, and the results confirmed the presence of fluorine in LNR. Thermogravimetric analyses also indicated that the modification improved thermal stability of the LNR. Contact angle measurements were also conducted to verify the hydrophobicity of the fluorinated rubber and the results obtained showed that F-LNR exhibited higher hydrophobicity than LNR.



http://ift.tt/2tqPkhQ

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις