Abstract
A facile strategy for detecting xanthine in serum samples by copper nanocluster (CuNCs) with high intrinsic peroxidase-like activity was reported. Firstly, a simple, mild and time-saving method for preparing CuNCs was developed, in which dithiothreitol (DTT) and bovine serum albumin (BSA) were used as reductant and stabilizer, respectively. The as-prepared CuNCs exhibited a fluorescence emission at 590 nm with a quantum yield (QY) of approximately 5.29%, the fluorescence intensity of the as-prepared CuNCs exhibited no considerable change when stored under ambient condition with the lifetime is 1.75 μs. Moreover, the as-prepared CuNCs exhibited high intrinsic peroxidase-like activity with lower K m (K m = 8.90 × 10−6 mol L−1) for H2O2, which indicated that CuNCs have a higher affinity for H2O2. Compared with natural enzyme, the as-synthesized CuNCs are more catalytic stable over a wide range of pH (4.0~13.0) and temperature (4~80 °C). Finally, an indirect method for sensing xanthine was established because xanthine oxidase can catalyse the oxidation of xanthine to produce H2O2. Xanthine could be detected as low as 3.8 × 10−7 mol L−1 with a linear range from 5.0 × 10−7 to 1.0 × 10−4 mol L−1. These results proved that the proposed method is sensitive and accurate and could be successfully applied to the determination of xanthine in the serum sample with satisfaction.
http://ift.tt/2u1fSqk
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου