Δευτέρα 1 Ιουλίου 2019

Mycorrhiza

A non-toxic polymer enhances sorghum - mycorrhiza symbiosis for bioremediation of Cd

Abstract

In this study, the effect of a mycorrhizal symbiosis on the translocation of Cd from Cd-polluted soil to sorghum roots was investigated using rhizoboxes. A factorial experiment (two factors including fungus inoculation and Cd contamination) in a completely randomized design with three replicates was performed. In the rhizobox rhizosphere compartment, plants were cultivated in uncontaminated soil and mycorrhizal inoculation (inoculated with Claroideoglomus etunicatum or non-inoculated) was performed, and in the other compartment, the soil was contaminated with Cadmium (Cd) at one of three levels (0, 100 mg kg−1 using a non-toxic organic polymer (poly (N-vinyl succinate))–Cd, or 100 mg kg−1 using Cd-nitrate). Cd pollution resulted in a significant decrease in shoot dry weight (from 7.52 to 6.18 and 6.68 g pot−1, from control to polymer-Cd and nitrate-Cd respectively), root mycorrhizal colonization (from 32.33% to 8.16% and 8.33%), shoot phosphorus concentration (from 3.14 to 2.80 and 2.76 g kg−1), and soil carbohydrate (from 12.05 to 10.74 and 10.24 mg g−1), and also resulted in significant increases in soil glomalin (from 595.55 to 660.52 and 690.39 μg g−1). The use of mycorrhizal fungi increased the glomalin content of the soil and improved the studied parameters. The results revealed the key role of Claroideoglomus etunicatum in translocation of Cd in the rhizobox and also in precise control of Cd concentration of plant tissues (increase or decrease of them depending on Cd composition and Cd availability). Poly(N-vinyl succinate) increased Cd availability and Cd concentration of shoot tissue (5.19 mg kg−1) compared to nitrate-Cd (3.68 mg kg−1) and could be recommended for improving phytoremediation.



Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine ( Pinus contorta ) seedlings to salt stress

Abstract

With large forested urban areas, the city of Edmonton, Alberta, Canada, faces high annual costs of replacing trees injured by deicing salts that are commonly used for winter road maintenance. Ectomycorrhizal fungi form symbiotic associations with tree roots that allow trees to tolerate the detrimental effects of polluted soils. Here, we examined mycorrhizal colonization of Pinus contorta by germinating seeds in soils collected from different locations: (1) two urban areas within the city of Edmonton, and (2) an intact pine forest just outside Edmonton. We then tested the responses of seedlings to 0-, 60-, and 90-mM NaCl. Our results showed lower abundance and diversity of ectomycorrhizal fungi in seedlings colonized with the urban soils compared to those from the pine forest soil. However, when subsequently exposed to NaCl treatments, only seedlings inoculated with one of the urban soils containing fungi from the genera TuberSuillus, and Wilcoxina, showed reduced shoot Na accumulation and higher growth rates. Our results indicate that local ectomycorrhizal fungi that are adapted to challenging urban sites may offer a potential suitable source for inoculum for conifer trees designated for plating in polluted urban environments.



Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants?

Abstract

Inoculation of arbuscular mycorrhizal fungi (AMF) as plant growth promoters has mostly been conducted using single-species inoculum. In this study, we investigated whether co-inoculation of different native AMF species induced an improvement of plant growth in an ultramafic soil. We analyzed the effects of six species of AMF from a New Caledonian ultramafic soil on plant growth and nutrition, using mono-inoculations and mixtures comprising different numbers of AMF species, in a greenhouse experiment. The endemic Metrosideros laurifolia was used as a host plant. Our results suggest that, when the plant faced multiple abiotic stress factors (nutrient deficiencies and high concentrations of different heavy metals), co-inoculation of AMF belonging to different families was more efficient than mono-inoculation in improving biomass, mineral nutrition, Ca/Mg ratio, and tolerance to heavy metals of plants in ultramafic soil. This performance suggested functional complementarity between distantly related AMF. Our findings will have important implications for restoration ecology and mycorrhizal biotechnology applied to ultramafic soils.



Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria

Abstract

Due to the impoverishment of agricultural and horticultural soils and replant diseases, there is a need to use bioproducts and beneficial microorganisms in order to improve the quality of soils and growth substrates. For this reason, research was undertaken to assess the impact of arbuscular mycorrhizal fungi and rhizosphere bacteria on changes in soil microbiology, the degree of colonization of plant roots by mycorrhizal fungi, selected physiological parameters, and fruit quality and yield of the strawberry cultivar "Rumba." The plants were inoculated with the mycorrhizal preparation Mykoflor (Rhizophagus irregularisFunneliformis mosseaeClaroideoglomus etunicatum), MYC 800 (Rhizophagus intraradices), and the bacterial preparation Rhizocell C (Bacillus amyloliquefaciens IT45). The applied preparations increased the total number of bacteria and fungi in the soil and mycorrhizal frequency in the roots of the strawberry plants. They increased the chlorophyll "a" and total chlorophyll concentrations in the leaves as well as the rate of transpiration and CO2 concentration in the intercellular spaces in the leaves. The plants treated with Rhizocell C and MYC 800 exhibited a higher CO2 assimilation rate than control plants. The biopreparations increased chlorophyll fluorescence parameters such as maximum fluorescence (FM) and the maximum potential photochemical reaction efficiency in PS II (FV/FM). The influence of the species of rhizosphere bacteria and mycorrhizal fungi used in the experiment on the physiological traits of strawberry plants contributed, especially in the second year of the study, to increase the yield and mean weight of strawberry fruit.



Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover

Abstract

Interactions between bacteria and arbuscular mycorrhizal (AM) fungi play a significant role in mediating organic phosphorus (P) transformations and turnover in soil. The bacterial community in soil is largely responsible for mobilization of the soil organic P pool, and the released P is taken up by extraradical AM hyphae, which mediate its use for plant growth. However, the functional microbiome involved in organic P mineralization in the hyphosphere remains poorly understood. The aim of this study was to determine how AM hyphae-associated bacterial communities related to P turnover in the hyphosphere of leek (Allium porrum) respond to different forms of soil P. Using a compartmented microcosm, leek was grown with the AM fungus Funneliformis mosseae, and the extraradical mycelium of F. mosseae was allowed to grow into a separate hyphal compartment containing either no added P, or P as KH2PO4 or phytin. High-throughput sequencing showed that the alkaline phosphatase (ALP)-harboring bacterial community associated with the AM hyphae was dominated by SinorhizobiumBradyrhizobiumPseudomonas, and Ralstonia and was significantly changed in response to different P treatments, with Pseudomonas showing higher relative abundance in organic P treatments than in control and inorganic P treatments. Pseudomonas was also the major genus harboring the β-propeller phytase (BPP) gene in the hyphosphere, but the BPP-harboring community structure was not affected by the presence of different P forms. These results demonstrate the profound differences in ALP- and BPP-harboring bacterial communities in the hyphosphere at bacterial genus level, providing new insights to link bacteria and biogeochemical P cycling driven in association with mycorrhizal hyphae.



Rhizophagus irregularis modulates cadmium uptake, metal transporter, and chelator gene expression in Medicago sativa

Abstract

Arbuscular mycorrhizal fungi (AMF) are considered a potential biotechnological tool for mitigating heavy metal (HM) toxicity. A greenhouse experiment was conducted to evaluate the impacts of the AM fungus Rhizophagus irregularis on cadmium (Cd) uptake, mycorrhizal colonization, and some plant growth parameters of Medicago sativa (alfalfa) in Cd-polluted soils. In addition, expression of two metal chelators (MsPCS1 (phytochelatin synthase) and MsMT2 (metallothionein)) and two metal transporter genes (MsIRT1 and MsNramp1) was analyzed using quantitative real-time PCR (qRT-PCR). Cd addition had a significant negative effect on mycorrhizal colonization. However, AMF symbiosis promoted the accumulation of biomass under both stressed and unstressed conditions compared with non-mycorrhizal (NM) plants. Results also showed that inoculation with R. irregularis significantly reduced shoot Cd concentration in polluted soils. Transcripts abundance of MsPCS1MsMT2MsIRT1, and MsNRAMP1 genes were downregulated compared with NM plants indicating that metal sequestration within hyphal fungi probably made Cd concentration insufficient in root cells for induction of these genes. These results suggest that reduction of shoot Cd concentration in M. sativa colonized by R. irregulariscould be a promising strategy for safe production of this plant in Cd-polluted soils.



Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions

Abstract

Soil salinity is an environmental condition that is currently increasing worldwide. Plant growth under salinity induces osmotic stress and ion toxicity impairing root water and nutrient absorption, but the association with beneficial soil microorganisms has been linked to an improved adaptation to this constraint. The ectomycorrhizal (ECM) symbiosis has been proposed as a key factor for a better tolerance of woody species to salt stress, thanks to the reduction of sodium (Na+) uptake towards photosynthetic organs. Although no precise mechanisms for this enhanced plant salt tolerance have been described yet, in this review, we summarize the knowledge accumulated so far on the role of ECM symbiosis. Moreover, we propose several strategies by which ECM fungi might help plants, including restriction of Na+ entrance into plant tissues and improvement of mineral nutrition and water balances. This positive effect of ECM fungi has been proven in field assays and the results obtained point to a promising application in forestry cultures and reforestation.



First record of North American fungus Rhizopogon pseudoroseolus in Australia and prediction of its occurrence based on climatic niche and symbiotic partner preferences

Abstract

In 2017 a North American fungus, Rhizopogon pseudoroseolus (Boletales, Basidiomycota), formerly known in Oceania as only occurring in New Zealand, was found for the first time in South Australia. The morphological identification of collected specimens was confirmed using an internal transcribed spacer barcoding approach. In this study, the biogeography of R. pseudoroseolus is also presented, based on sporocarp and ectomycorrhiza records. Species distribution modeling implemented in MaxEnt was used to estimate the distribution of the potential range of R. pseudoroseolus in Australia and New Zealand. The obtained model illustrates, in the background of climatic variables and distribution of a symbiotic partner, its wide range of suitable habitats in New Zealand, South-East Australia, and Tasmania. Precipitation of the coldest quarters and annual mean temperature are important factors influencing the potential distribution of the fungus. The occurrence of Pinus radiata, the ectomycorrhizal partner of R. pseudoroseolus, is also an important factor limiting expansion of the fungus' invasion range.



Two herbicides, two fungicides and spore-associated bacteria affect Funneliformis mosseae extraradical mycelium structural traits and viability

Abstract

The extraradical mycelium (ERM) produced by arbuscular mycorrhizal fungi is fundamental for the maintenance of biological fertility in agricultural soils, representing an important inoculum source, together with spores and mycorrhizal root fragments. Its viability and structural traits, such as density, extent and interconnectedness, which are positively correlated with the growth and nutrition of host plants, may be affected by different agronomic practices, including the use of pesticides and by different mycorrhizospheric communities. This work, carried out using a whole-plant experimental model system, showed that structural traits of ERM, such as length and density, were strongly decreased by the herbicides dicamba and glufosinolate and the fungicides benomyl and fenhexamid, while anastomosis frequency and hyphal branching were differentially modulated by singly inoculated mycorrhizospheric bacteria, depending on their identity.



Chestnuts bred for blight resistance depart nursery with distinct fungal rhizobiomes

Abstract

Restoration of the American chestnut (Castanea dentata) is underway using backcross breeding that confers chestnut blight disease resistance from Asian chestnuts (most often Castanea mollissima) to the susceptible host. Successful restoration will depend on blight resistance and performance of hybrid seedlings, which can be impacted by below-ground fungal communities. We compared fungal communities in roots and rhizospheres (rhizobiomes) of nursery-grown, 1-year-old chestnut seedlings from different genetic families of American chestnut, Chinese chestnut, and hybrids from backcross breeding generations as well as those present in the nursery soil. We specifically focused on the ectomycorrhizal (EcM) fungi that may facilitate host performance in the nursery and aid in seedling establishment after outplanting. Seedling rhizobiomes and nursery soil communities were distinct and seedlings recruited heterogeneous communities from shared nursery soil. The rhizobiomes included EcM fungi as well as endophytes, putative pathogens, and likely saprobes, but their relative proportions varied widely within and among the chestnut families. Notably, hybrid seedlings that hosted few EcM fungi hosted a large proportion of potential pathogens and endophytes, with possible consequences in outplanting success. Our data show that chestnut seedlings recruit divergent rhizobiomes and depart nurseries with communities that may facilitate or compromise the seedling performance in the field.



Alexandros Sfakianakis
Anapafseos 5 . Agios Nikolaos
Crete.Greece.72100
2841026182
6948891480

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις