DiGeorge syndrome (DGS) is a genetic disorder known as a clinically variable syndrome with over 180 associated phenotypic features. It is caused by a common human deletion in the 22q11.2 chromosomal region and currently is affecting approximately 1 in 4,000 individuals. Despite the prevalence of inherited diseases mainly due to consanguineous marriages, the current diagnosis of DGS in Saudi Arabia is mainly based on conventional high-resolution chromosome banding (karyotyping) and FISH techniques. However, advanced genome-wide studies for detecting microdeletions or duplications across the whole genome are needed. The aim of this study is to implement and use aCGH technology in clinical diagnosis of the 22q11.2 deletion in Saudi Arabian DGS patients and to confirm its effectiveness compared to conventional FISH and chromosome banding techniques. Thirty suspected DGS patients were assessed for chromosome 22q11.2 deletion using high-resolution G-banding, FISH, and aCGH. The aCGH results were compared with those obtained by the other 2 cytogenetic techniques. G-banding detected the 22q11.2 deletion in only 1 patient in the cohort. Moreover, it detected additional chromosomal aberrations in 3 other patients. Using FISH, allowed for detection of the 22q11.2 deletion in 2 out of 30 patients. Interestingly, the use of aCGH technique showed deletions in the chromosome 22q11.2 region in 8 patients, indicating a 4-fold increase in diagnostic detection capacity compared to FISH. Our results show the effectiveness of aCGH to overcome the limitations of FISH and G-banding in terms of diagnostic yield and allow whole genome screening and detection of a larger number of deletions and/or duplications in Saudi Arabian DGS patients. Except for balanced translocations and inversions, our data demonstrate the suitability of aCGH in the diagnostics of submicroscopic deletion syndromes such as DGS and most chromosomal aberrations or complex abnormalities scattered throughout the human genome. Our results recommend the implementation of aCGH in clinical genomic testing in Saudi Arabia to improve the diagnostic capabilities of health services while maintaining the use of conventional cytogenetic techniques for subsequent validation or for specific and known aberrations whenever required.
Cytogenet Genome Res
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2Ghhstm
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives Greece is one of the leading tobacco-producing countries in European Union, and every year over 19 000 Greeks die from tobacco-at...
-
Objectives Drug interactions, poor adherence to medication and high-risk sexual behaviour may occur in individuals with HIV using recreation...
-
Introduction Multimorbidity (MM) refers to the coexistence of two or more chronic conditions within one person, where no one condition is co...
-
Objective To describe the prevalence and severity of diabetic retinopathy (DR) and sight-threatening DR (STDR) among Chinese adults with dia...
-
Related Articles Three job stress models and their relationship with musculoskeletal pain in blue- and white-collar workers. J Psycho...
-
Abstract Background Mature T-cell and natural killer (NK)-cell lymphomas compose a heterogeneous group of non-Hodgkin lymphomas, and ext...
-
<span class="paragraphSection"><div class="boxTitle">Abstract</div>Masked hypertension (MHT), defined ...
-
Background Hepatitis B virus (HBV) transmission is known to occur through direct contact with infected blood. There has been some suspicion ...
-
In Rwanda, the prevalence of viral hepatitis (HCV) is poorly understood. The current study investigated the prevalence and risk factors of H...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου