Publication date: Available online 14 February 2018
Source:Academic Radiology
Author(s): Andrea Ferrero, Ralf Gutjahr, Ahmed F. Halaweish, Shuai Leng, Cynthia H. McCollough
Rational and ObjectivesThis study aims to investigate the performance of a whole-body, photon-counting detector (PCD) computed tomography (CT) system in differentiating urinary stone composition.Materials and MethodsEighty-seven human urinary stones with pure mineral composition were placed in four anthropomorphic water phantoms (35–50 cm lateral dimension) and scanned on a PCD-CT system at 100, 120, and 140 kV. For each phantom size, tube current was selected to match CTDIvol (volume CT dose index) to our clinical practice. Energy thresholds at [25, 65], [25, 70], and [25, 75] keV for 100, 120, and 140 kV, respectively, were used to generate dual-energy images. Each stone was automatically segmented using in-house software; CT number ratios were calculated and used to differentiate stone types in a receiver operating characteristic (ROC) analysis. A comparison with second- and third-generation dual-source, dual-energy CT scanners with conventional energy integrating detectors (EIDs) was performed under matching conditions.ResultsFor all investigated settings and smaller phantoms, perfect separation between uric acid and non–uric acid stones was achieved (area under the ROC curve [AUC] = 1). For smaller phantoms, performance in differentiation of calcium oxalate and apatite stones was also similar between the three scanners: for the 35-cm phantom size, AUC values of 0.76, 0.79, and 0.80 were recorded for the second- and third-generation EID-CT and for the PCD-CT, respectively. For larger phantoms, PCD-CT and the third-generation EID-CT outperformed the second-generation EID-CT for both differentiation tasks: for a 50-cm phantom size and a uric acid/non–uric acid differentiating task, AUC values of 0.63, 0.95, and 0.99 were recorded for the second- and third-generation EID-CT and for the PCD-CT, respectively.ConclusionPCD-CT provides comparable performance to state-of-the-art EID-CT in differentiating urinary stone composition.
from Imaging via alkiviadis.1961 on Inoreader http://ift.tt/2GhfadB
Πέμπτη 15 Φεβρουαρίου 2018
Characterization of Urinary Stone Composition by Use of Whole-body, Photon-counting Detector CT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives Greece is one of the leading tobacco-producing countries in European Union, and every year over 19 000 Greeks die from tobacco-at...
-
Objectives Drug interactions, poor adherence to medication and high-risk sexual behaviour may occur in individuals with HIV using recreation...
-
Introduction Multimorbidity (MM) refers to the coexistence of two or more chronic conditions within one person, where no one condition is co...
-
Objective To describe the prevalence and severity of diabetic retinopathy (DR) and sight-threatening DR (STDR) among Chinese adults with dia...
-
Related Articles Three job stress models and their relationship with musculoskeletal pain in blue- and white-collar workers. J Psycho...
-
Abstract Background Mature T-cell and natural killer (NK)-cell lymphomas compose a heterogeneous group of non-Hodgkin lymphomas, and ext...
-
<span class="paragraphSection"><div class="boxTitle">Abstract</div>Masked hypertension (MHT), defined ...
-
Background Hepatitis B virus (HBV) transmission is known to occur through direct contact with infected blood. There has been some suspicion ...
-
In Rwanda, the prevalence of viral hepatitis (HCV) is poorly understood. The current study investigated the prevalence and risk factors of H...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου