Proliferating cancer cells reprogram their metabolic circuitry to thrive in an environment deficient in nutrients and oxygen. Cancer cells exhibit a higher rate of glucose metabolism than normal somatic cells, which is achieved by switching from oxidative phosphorylation to aerobic glycolysis to meet the energy and metabolites demands of tumour progression. This phenomenon, which is known as the Warburg effect, has generated renewed interest in the process of glucose metabolism reprogramming in cancer cells.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2mX2Oj3
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Background A reported penicillin allergy may compromise receipt of recommended antibiotic prophylaxis intended to prevent surgica...
-
Related Articles Feasibility of Brain Atrophy Measurement in Clinical Routine without Prior Standardization of the MRI Protocol:...
-
Abstract The core mission of the Early Stage Professionals in Molecular Imaging Sciences (ESPMIS) Interest Group is to help young scientist...
-
Rejuvenation Research , Vol. 0, No. 0. from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2EFILxo via I...
-
Letter to the editor of Acta Neurochirurgica: simultaneous pericranial and nasoseptal "double-flap" reconstruction after comb...
-
Adenylyl Cyclase-Associated Protein 1 in the Development of Head and Neck Squamous Cell Carcinomas. Bull Exp Biol Med. 2016 Mar 29; A...
-
Context. Despite improvement in pain management and availability of clinical treatment guidelines, patients in Jordan are still suffering fr...
-
In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation) for vehicle suspension systems, ...
-
Ravikiran N Pawar, Sambhunath Banerjee, Subhajit Bramha, Shekhar Krishnan, Arpita Bhattacharya, Vaskar Saha, Anupam Chakrapani, Saurabh Bhav...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου