Andreev bound states (ABSs) are well-de ned many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several new electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a novel transport mechanism called resonant ABS tunneling, possible only in multi-terminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single particle states as eigenstates of the QD. We qualitatively explain these results as originating from the nite time scale required for the coherent oscillations between the superposition states after a single electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2ChVV33
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Recent updating of the World Health Organization (WHO) classification of central nervous system (CNS) tumors in 2016 demonstrates...
-
In our previous work, the dichloromethane-methanol (1:1 v/v) extract, fractions and isolated compounds from Polyscias fulva stem bark showed...
-
Background Agricultural work can expose workers to increased risk of heat strain and volume depletion due to repeated exposures to high ambi...
-
Cincinnati.com No fooling; go get your head (and neck) examined for free Cincinnati.com Thursday, get your head examined. UC Health ...
-
Nursing students' perceptions of a video-based serious game's educational value: A pilot study. Nurse Educ Today. 2017 Dec 28;...
-
Anaphora is a rhetorical term for the repetition of a word or phrase at the beginning of successive clauses or verses. from #AlexandrosSfa...
-
Abstract We introduce a novel diagnostic Visual Voiding Device (VVD), which has the ability to visually document urinary voiding events an...
-
Method combines radiomics with three - compartment breast image analysis of dual - energy mammography (Source: The Doctors Lounge - Oncology...
-
Cone beam computerized tomography (CBCT) has been widely used in dental implanting. However, the local hospitals usually don’t have access t...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου