Abstract
How do the k-core structures of real-world graphs look like? What are the common patterns and the anomalies? How can we exploit them for applications? A k-core is the maximal subgraph in which all vertices have degree at least k. This concept has been applied to such diverse areas as hierarchical structure analysis, graph visualization, and graph clustering. Here, we explore pervasive patterns related to k-cores and emerging in graphs from diverse domains. Our discoveries are: (1) Mirror Pattern: coreness (i.e., maximum k such that each vertex belongs to the k-core) is strongly correlated with degree. (2) Core-Triangle Pattern: degeneracy (i.e., maximum k such that the k-core exists) obeys a 3-to-1 power-law with respect to the count of triangles. (3) Structured Core Pattern: degeneracy–cores are not cliques but have non-trivial structures such as core–periphery and communities. Our algorithmic contributions show the usefulness of these patterns. (1) Core-A, which measures the deviation from Mirror Pattern, successfully spots anomalies in real-world graphs, (2) Core-D, a single-pass streaming algorithm based on Core-Triangle Pattern, accurately estimates degeneracy up to 12 \(\times \) faster than its competitor. (3) Core-S, inspired by Structured Core Pattern, identifies influential spreaders up to 17 \(\times \) faster than its competitors with comparable accuracy.
http://ift.tt/2togER2
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου