Publication date: Available online 13 May 2017
Source:Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
Author(s): Bojana Ristic, Yangzom D. Bhutia, Vadivel Ganapathy
Mitochondria are the sites of pyruvate oxidation, citric acid cycle, oxidative phosphorylation, ketogenesis, and fatty acid oxidation. Attenuation of mitochondrial function is one of the most significant changes that occurs in tumor cells, directly linked to oncogenesis, angiogenesis, Warburg effect, and epigenetics. In particular, three mitochondrial enzymes are inactivated in cancer: pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl CoA synthase-2 (HMGCS2). These enzymes are subject to regulation via acetylation/deacetylation. SIRT3, the predominant mitochondrial deacetylase, directly targets these enzymes for deacetylation and maintains their optimal catalytic activity. SIRT3 is a tumor suppressor, and deacetylation of these enzymes contributes to its biological function. PDH catalyzes the oxidative decarboxylation of pyruvate into acetyl CoA, SDH oxidizes succinate into fumarate, and HMGCS2 controls the synthesis of the ketone body β-hydroxybutyrate. As the activities of these enzymes are decreased in cancer, tumor cells accumulate lactate and succinate but produce less amounts of β-hydroxybutyrate. Apart from their role in cellular energetics, these metabolites function as signaling molecules via specific cell-surface G-protein-coupled receptors. Lactate signals via GPR81, succinate via GPR91, and β-hydroxybutyrate via GPR109A. In addition, lactate activates hypoxia-inducible factor HIF1α and succinate promotes DNA methylation. GPR81 and GPR91 are tumor promoters, and increased production of lactate and succinate as their agonists drives tumorigenesis by enhancing signaling via these two receptors. In contrast, GPR109A is a tumor suppressor, and decreased synthesis of β-hydroxybutyrate as its agonist suppresses signaling via this receptor, thus attenuating the tumor-suppressing function of GPR109A. In parallel with the opposing changes in lactate/succinate and β-hydroxybutyrate levels, tumor cells upregulate GPR81 and GPR91 but downregulate GPR109A. As such, these three metabolite receptors play a critical role in cancer and represent a new class of drug targets with selective antagonists of GPR81 and GPR91 for cancer treatment and agonists of GPR109A for cancer prevention.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2pwPh5Q
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
This case report outlines the possibility of accelerated tooth movement with the combination of microosteoperforation and mini-screws. A 14-...
-
by Rebekah L. Rogers, Ling Shao, Kevin R. Thornton One common hypothesis to explain the impacts of tandem duplications is that whole gene ...
-
Immunotherapy for metastatic melanoma has a decades-long history, and the relatively recent use of checkpoint inhibitors has revolutionized...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2juls25 via IFTTT
-
ACS Nano DOI: 10.1021/acsnano.6b08387 from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jIA5i2 via...
-
A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated ca...
-
by Mark A. Valasek, Irene Thung, Esha Gollapalle, Alexey A. Hodkoff, Kaitlyn J. Kelly, Joel M. Baumgartner, Vera Vavinskaya, Grace Y. Lin, A...
-
The secondary channel (SC) of multisubunit RNA polymerases (RNAPs) allows access to the active site and is a nexus for the regulation of tra...
-
by Hellen Houlleberghs, Anne Goverde, Jarnick Lusseveld, Marleen Dekker, Marco J. Bruno, Fred H. Menko, Arjen R. Mensenkamp, Manon C. W. Sp...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου