Πέμπτη 4 Μαΐου 2017

Bovine mammary gland X chromosome inactivation

S00220302.gif

Publication date: Available online 3 May 2017
Source:Journal of Dairy Science
Author(s): C. Couldrey, T. Johnson, T. Lopdell, I.L. Zhang, M.D. Littlejohn, M. Keehan, R.G. Sherlock, K. Tiplady, A. Scott, S.R. Davis, R.J. Spelman
X chromosome inactivation (XCI) is a process by which 1 of the 2 copies of the X chromosomes present in female mammals is inactivated. The transcriptional silencing of one X chromosome achieves dosage compensation between XX females and XY males and ensures equal expression of X-linked genes in both sexes. Although all mammals use this form of dosage compensation, the complex mechanisms that regulate XCI vary between species, tissues, and development. These mechanisms include not only varying levels of inactivation, but also the nature of inactivation, which can range from being random in nature to driven by parent of origin. To date, no data describing XCI in calves or adult cattle have been reported and we are reliant on data from mice to infer potential mechanisms and timings for this process. In the context of dairy cattle breeding and genomic prediction, the implications of X chromosome inheritance and XCI in the mammary gland are particularly important where a relatively small number of bulls pass their single X chromosome on to all of their daughters. We describe here the use of RNA-seq, whole genome sequencing and Illumina BovineHD BeadChip (Illumina, San Diego, CA) genotypes to assess XCI in lactating mammary glands of dairy cattle. At a population level, maternally and paternally inherited copies of the X chromosome are expressed equally in the lactating mammary gland consistent with random inactivation of the X chromosome. However, average expression of the paternal chromosome ranged from 10 to 90% depending on the individual animal. These results suggest that either the mammary gland arises from 1 or 2 stem cells, or a nongenetic mechanism that skews XCI exists. Although a considerable amount of future work is required to fully understand XCI in cattle, the data reported here represent an initial step in ensuring that X chromosome variation is captured and used in an appropriate manner for future genomic selection.



from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2pKhEMS
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις