Κυριακή 2 Απριλίου 2017

A Systematic Analysis of Negative Growth Control Implicates the DREAM Complex in Cancer Cell Dormancy

Epithelial ovarian cancer (EOC) generates multicellular aggregates called spheroids that detach from the primary tumor and disseminate through ascites. Spheroids possess a number of characteristics of tumor dormancy including withdrawal from the cell cycle and resistance to chemotherapeutics. This report systematically analyzes the effects of RNAi depletion of 21 genes that are known to contribute to negative regulation of the cell cycle in 10 ovarian cancer cell lines. Interestingly, spheroid cell viability was compromised by loss of some cyclin-dependent kinase inhibitors such as p57Kip2, as well as Dyrk1A, Lin52, and E2F5 in most cell lines tested. Many genes essential for EOC spheroid viability are pertinent to the mammalian DREAM repressor complex. Mechanistically, the data demonstrate that DREAM is assembled upon the induction of spheroid formation, which is dependent upon Dyrk1A. Loss of Dyrk1A results in retention of the b-Myb–MuvB complex, elevated expression of DREAM target genes, and increased DNA synthesis that is coincident with cell death. Inhibition of Dyrk1A activity using pharmacologic agents Harmine and INDY compromises viability of spheroids and blocks DREAM assembly. In addition, INDY treatment improves the response to carboplatin, suggesting this is a therapeutic target for EOC treatment.

Implications: Loss of negative growth control mechanisms in cancer dormancy lead to cell death and not proliferation, suggesting they are an attractive therapeutic approach. Mol Cancer Res; 15(4); 371–81. ©2016 AACR.



from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2orAzeR
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις