Advances in the management of traumatic brain injury, subarachnoid haemorrhage and intracranial tumours have led to improved survival rates and an increased focus on quality of life of survivors. Endocrine sequelae of the acute brain insult and subsequent neurosurgery, peri-operative fluid administration and/or cranial irradiation are now well described. Unrecognised acute hypopituitarism, particularly ACTH/cortisol deficiency and diabetes insipidus, can be life threatening. Although hypopituitarism may be transient, up to 30% of survivors of TBI have chronic hypopituitarism, which can diminish quality of life and hamper rehabilitation. Patients who survive SAH may also develop hypopituitarism, though it is less common than after TBI. The growth hormone axis is most frequently affected. There is also accumulating evidence that survivors of intracranial malignancy, who have required cranial irradiation, may develop hypopituitarism. The time course of the development of hormone deficits is varied, and predictors of pituitary dysfunction are unreliable. Furthermore, diagnosis of GH and ACTH deficiency require dynamic testing that can be resource intensive. Thus the surveillance and management of neuroendocrine dysfunction in neurosurgical patients poses significant logistic challenges to endocrine services. However, diagnosis and management of pituitary dysfunction can be rewarding. Appropriate hormone replacement can improve quality of life, prevent complications such as muscle atrophy, infection and osteoporosis and improve engagement with physiotherapy and rehabilitation.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2nFbPPQ
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου