Publication date: Available online 11 February 2017
Source:Biochimie
Author(s): A.K. Mohamad Fairus, B. Choudhary, S. Hosahalli, N. Kavitha, O. Shatrah
Dihydroorotate dehydrogenase (DHODH) is the key enzyme in de novo biosynthesis of pyrimidine in both prokaryotes and eukaryotes. The de novo pathway of pyrimidine biosynthesis is essential in cancer cells proliferation. Leflunomide is an approved DHODH inhibitor that has been widely used for the treatment of arthritis. Similarly, brequinar sodium is another DHODH inhibitor that showed anti-tumour effect in MC38 colon carcinoma cells when used in combination with fluorouracil. Despite the potential role of DHODH inhibitors in cancer therapy, their mechanisms of action remain obscure and await further elucidation. Here, we evaluated the effect of DHODH inhibitors on the production of ATP and ROS in sensitive and non-sensitive breast cancer cells. Subsequently, the effects of DHODH inhibitors on cell cycle as well as on signalling molecules such as p53, p65 and STAT6 were evaluated in sensitive T-47D and non-sensitive MDAMB-436 cells. The correlations between DHODH protein expression, proliferation speed and sensitivity to DHODH inhibitors were also investigated in a panel of cancer cell lines. DHODH inhibitors-sensitive T-47D and MDAMB-231 cells appeared to preserve ROS production closely to endogenous ROS level whereas the opposite was observed in non-sensitive MDAMB-436 and W3.006 cells. In addition, we observed approximately 90% of intracellular ATP depletion in highly sensitive T-47D and MDAMB-231 cells compared to non-sensitive MDAMB-436 cells. There was significant over-expression of p53, p65 and STAT6 signalling molecules in sensitive cells which may be involved in mediating the S-phase arrest in cell cycle progression. The current study suggests that DHODH inhibitors are most effective in cells that express high levels of DHODH enzyme. The inhibition of cell proliferation by these inhibitors appears to be accompanied by ROS production as well as ATP depletion. The increase in expression of signalling molecules observed may be due to pyrimidine depletion which subsequently leads to cell cycle arrest at S-phase.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2kG2ViO
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Blinatumomab is a bispecific T-cell engaging αCD19 antibody used in refractory or relapsed B-cell precursor acute lymphoblastic l...
-
About 540 million years ago a group of jellyfish washed ashore, died and fossilised – preserving evidence of the earliest example of an anim...
-
The pursuit for clarity in diagnostic and treatment pathways for the complex, chronic condition of myalgic encephalomyelitis/chronic fatigue...
-
Abstract Objective To study clinical profile and outcome in patients with methemoglobinemia following exposure to toxic colors during Ho...
-
Facial Nerve Clinic to Provide Comprehensive Personalized Care Newswise (press release) The program will treat patients with facial n...
-
Acquired Vascular Tumors of the Head and Neck. Otolaryngol Clin North Am. 2017 Oct 26;: Authors: Persky M, Tran T Abstract Vascular...
-
Background. Sevoflurane is rarely used for the treatment of status asthmaticus. We report a case of sevoflurane hepatotoxicity in pregnancy ...
-
To survive in its sand fly vector, the trypanosomatid protozoan parasite Leishmania first attaches to the midgut to avoid excretion, but eve...
-
Publication date: Available online 4 May 2017 Source: Journal of Dairy Science Author(s): V. Bonfatti, D. Vicario, A. Lugo, P. Carnier T...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου