<span class="paragraphSection"><div class="boxTitle">Abstract</div>We used the marine bivalve (<span style="font-style:italic;">Mytilus galloprovincialis</span>) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C<sub>60</sub> fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of ‘clearance rates’ (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of <span style="font-style:italic;">p53</span> (anti-oncogene) and <span style="font-style:italic;">ras</span> (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in ‘clearance rates’ after 1 day exposure, however significant increases in ‘clearance rates’ were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for <span style="font-style:italic;">p53</span> and <span style="font-style:italic;">ras</span> expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C<sub>60</sub> and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).</span>
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jKML60
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
This case report outlines the possibility of accelerated tooth movement with the combination of microosteoperforation and mini-screws. A 14-...
-
by Sofie V. Nielsen, Amelie Stein, Alexander B. Dinitzen, Elena Papaleo, Michael H. Tatham, Esben G. Poulsen, Maher M. Kassem, Lene J. Rasm...
-
The secondary channel (SC) of multisubunit RNA polymerases (RNAPs) allows access to the active site and is a nexus for the regulation of tra...
-
A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor British Journal of Canc...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2juls25 via IFTTT
-
Viruses, Vol. 10, Pages 107: Recombinant Goose Circoviruses Circulating in Domesticated and Wild Geese in Poland Viruses doi: 10.3390/v1003...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2qoeMDm via IFTTT
-
A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated ca...
-
Abstract Autogenous bone fragments generated during surgery (e.g. implant site preparation) accelerate bone formation by the release of a l...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου