Κυριακή 16 Οκτωβρίου 2016

Generating -Commutator Identities and the -BCH Formula

Motivated by the physical applications of -calculus and of -deformations, the aim of this paper is twofold. Firstly, we prove the -deformed analogue of the celebrated theorem by Baker, Campbell, and Hausdorff for the product of two exponentials. We deal with the -exponential function , where denotes, as usual, the th -integer. We prove that if and are any noncommuting indeterminates, then , where is a sum of iterated -commutators of and (on the right and on the left, possibly), where the -commutator has always the innermost position. When , this expansion is consistent with the known result by Schützenberger-Cigler: . Our result improves and clarifies some existing results in the literature. Secondly, we provide an algorithmic procedure for obtaining identities between iterated -commutators (of any length) of and . These results can be used to obtain simplified presentation for the summands of the -deformed Baker-Campbell-Hausdorff Formula.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2dTKUJW
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις