Abstract
Endurance exercise generates CO2 via aerobic metabolism; however, its role remains unclear. Exogenous CO2 by transcutaneous delivery promotes muscle fibre-type switching to increase endurance power in skeletal muscles. Here we determined the performance of rats running in activity wheels with/without transcutaneous CO2 exposure to clarify its effect on endurance exercise and recovery from muscle fatigue. Rats were randomised to control, training and CO2 groups. Endurance exercise included activity-wheel running with/without transcutaneous CO2 delivery. Running performance was measured after exercise initiation. We also analysed changes in muscle weight and muscle fibres in the tibialis anterior muscle. Running performance improved over the treatment period in the CO2 group, with a concomitant switch in muscle fibres to slow-type. The mitochondrial DNA content and capillary density in the CO2 group increased. CO2 was beneficial for performance and muscle development during endurance exercise: it may enhance recovery from fatigue and support anabolic metabolism in skeletal muscles.
http://ift.tt/2t4Yvnc