We investigate different concentration–compactness and blow-up phenomena related to the Q-curvature in arbitrary even dimension. We first treat the case of an open domain in {R^2}, then that of a closed manifold and, finally, the particular case of the sphere {S^2m}. In all cases we allow the sign of the Q-curvature to vary, and show that in the case of a closed manifold, contrary to the case of open domains in {R^2m}, blow-up phenomena can occur only at points of positive Q-curvature. As a consequence, on a locally conformally flat manifold of non-positive Euler characteristic we always have compactness.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2CIT02A
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take ca...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
1 abqls-210rm.html Read the latest Journal of Clinical Neurophysiology - Vol. 37, No. 1, January 2020.eml 2 agx3v-nxz96.html Read the late...
-
Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a f...
-
ACS Nano DOI: 10.1021/acsnano.6b04244 from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2aOZU8w via...
-
by Yanwei Li, Haifeng Liu, Wei Zeng, Jing Wei An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear p...
-
http://ift.tt/2p41efZ
-
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου