Accurate transfer demand prediction at bike stations is the key to develop balancing solutions to address the overutilization or underutilization problem often occurring in bike sharing system. At the same time, station transfer demand prediction is helpful to bike station layout and optimization of the number of public bikes within the station. Traditional traffic demand prediction methods, such as gravity model, cannot be easily adapted to the problem of forecasting bike station transfer demand due to the difficulty in defining impedance and distinct characteristics of bike stations (Xu et al. 2013). Therefore, this paper proposes a prediction method based on Markov chain model. The proposed model is evaluated based on field data collected from Zhongshan City bike sharing system. The daily production and attraction of stations are forecasted. The experimental results show that the model of this paper performs higher forecasting accuracy and better generalization ability.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2lLpNgq
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objective Outpatient parenteral antimicrobial therapy (OPAT) provides opportunities for improved cost savings, but in the UK, implementation...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
A middle-aged poorly controlled diabetic man developed left-sided orbital and facial swelling several days after extraction of a left upper ...
-
Universal newborn hearing screening (UNHS) has become the standard of care in many countries. The aim of this study was to evaluate the resu...
-
The overall objective of the guideline is to provide up-to-date, evidence-based recommendations for the management of lichen sclerosus (LS)...
-
Abstract The head-mounted display (HMD) has the potential to improve the quality of ultrasound-guided procedures. The aim of this non-clin...
-
http://ift.tt/2pnwWaQ
-
Background. Globally 3 to 8% of reproductive age women are suffering from premenstrual dysphoric disorder (PMDD). Several mental and reprodu...
-
ACS Nano DOI: 10.1021/acsnano.7b01926 from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2pOw4te via...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου