IJMS, Vol. 19, Pages 97: Motor, Somatosensory, Viscerosensory and Metabolic Impairments in a Heterozygous Female Rat Model of Rett Syndrome
International Journal of Molecular Sciences doi: 10.3390/ijms19010097
Authors: Aritra Bhattacherjee Michelle Winter Linda Eggimann Ying Mu Sumedha Gunewardena Zhaohui Liao Julie Christianson Peter Smith
Rett Syndrome (RTT), an autism-related disorder caused by mutation of the X-linked Methyl CpG-binding Protein 2 (MECP2) gene, is characterized by severe cognitive and intellectual deficits. While cognitive deficits are well-documented in humans and rodent models, impairments of sensory, motor and metabolic functions also occur but remain poorly understood. To better understand non-cognitive deficits in RTT, we studied female rats heterozygous for Mecp2 mutation (Mecp2−/x); unlike commonly used male Mecp2−/y rodent models, this more closely approximates human RTT where males rarely survive. Mecp2−/x rats showed rapid, progressive decline of motor coordination through six months of age as assessed by rotarod performance, accompanied by deficits in gait and posture. Mecp2−/x rats were hyper-responsive to noxious pressure and cold, but showed visceral hyposensitivity when tested by colorectal distension. Mecp2−/x rats ate less, drank more, and had more body fat resulting in increased weight gain. Our findings reveal an array of progressive non-cognitive deficits in this rat model that are likely to contribute to the compromised quality of life that characterizes RTT.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2C7ZE6x
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου