Proliferating cancer cells reprogram their metabolic circuitry to thrive in an environment deficient in nutrients and oxygen. Cancer cells exhibit a higher rate of glucose metabolism than normal somatic cells, which is achieved by switching from oxidative phosphorylation to aerobic glycolysis to meet the energy and metabolites demands of tumour progression. This phenomenon, which is known as the Warburg effect, has generated renewed interest in the process of glucose metabolism reprogramming in cancer cells.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2mX2Oj3
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Liver ischemia reperfusion injury (IRI) is inevitable during transplantation and resection and is characterized by hepatocellular injury. Th...
-
Abstract Biodegradable polymer blends of high-molecular-weight poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) are not miscible ...
-
IJERPH, Vol. 15, Pages 162: Examining Public Perceptions about Lead in School Drinking Water: A Mixed-Methods Analysis of Twitter Response t...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2uz2El4 via IFTTT
-
Publication date: Available online 10 May 2017 Source: Journal of Dairy Science Author(s): T. Pritchard, R. Mrode, M. Coffey, K. Bond, E....
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
Radioterapia oncologica, la Cattolica protagonista al Congresso Europeo insalutenews ... l'utilizzo della radioterapia stereotass...
-
Abstract Background Individualized medication reviews may improve our understanding of the distribution of CYP2C19 polymorphisms in ethn...
-
M Mahalakshmi, L Balamurugan, R Madhu, A Ramesh Indian Dermatology Online Journal 2017 8(3):224-225 from #AlexandrosSfakianakis via Al...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου