Κυριακή 23 Απριλίου 2017

Influence of Film Thickness and Heat Treatment on the Physical Properties of Mn Doped Sb2Se3 Nanocrystalline Thin Films

Nanocrystalline thin films of Sb37.07Mn1.95Se60.98 with different thickness (7, 20, 40, and 80 nm) were successfully prepared via inert gas condensation technique. As-deposited films showed amorphous structure by grazing incident in-plane X-ray diffraction (GIIXD) technique. All films of different thicknesses were heat treated at 433 K for 90 min. The GIIXD pattern of annealed films showed nanocrystalline orthorhombic structure. The effect of thickness of annealed films on the structure and optical properties was studied. Calculated particle sizes are 20.67 and 24.15 for 40 and 80 nm thickness of heat treated film. High resolution transmission electron microscope HRTEM images and their diffraction patterns proved that 40 nm film thickness annealed at different temperature has nanocrystalline nature with observed (high) crystallinity that increases with annealing temperature. Blue shift of optical energy gap was observed from 1.68 to 2 eV with decreasing film thickness from 80 to 7 nm. Film thickness of 40 nm was exposed to different heat treated temperatures from 353 to 473 K to detect its effect on structure and optical and electrical properties. Blue shift from 1.73 to 1.9 eV was observed in its optical band gap due to direct transition as heat treatment temperature decreasing from 473 to 353 K. Electrical conductivity was studied for different heat treated films of thickness 40 nm, and intrinsic conduction mechanism is dominant. The activation energy was affected by heat treatment process.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2p5l2PV
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις