Objectives The aim of this study was to investigate the feasibility of kidney stone composition analysis using spectral detector computed tomography scanner (SDCT) with normal- and low-dose imaging protocols. Methods A total of 154 stones harvested from nephrolithotripsy or nephrolithotomy with a known monocrystalline composition as determined by infrared spectroscopy were examined in a nonanthropomorphic phantom on an SDCT (IQon, Philips, Best, the Netherlands). Imaging was performed with 120 kVp and (a) 40 mAs and (b) 200 mAs, resulting in a computed tomography dose index (CTDIvol) of 2 and 10 mGy, respectively. Besides conventional CT images (CIs), SDCT enables reconstruction of virtual monoenergetic images (40–200 keV). Spectral coefficient images were calculated by performing a voxel-by-voxel combination of 40 and 200 keV images (Matlab R2017b, Mathworks Inc). All stones were semiautomatically 3D-segmented on CI using a threshold-based algorithm implemented in an offline DICOM viewer. Statistical assessment was performed using Steel-Dwass method to adjust for multiple comparisons. Results Ca-phosphate (n = 22), Ca-oxalate (n = 82), cysteine (n = 20), struvite (n = 3), uric acid (n = 18), and xanthine stones (n = 9) were included in the analysis. Stone diameter ranged from 3.0 to 13.5 mm. On CI, attenuation differed significantly between calcific and noncalcific stones only (P ≤ 0.05), the spectral coefficient differed significantly between (//): Ca-oxalate//Ca-phosphate//cystine//struvite//uric acid//xanthine in 10 mGy protocol (all P ≤ 0.05). The same results were found for the 2 mGy-protocol, except that differentiation of Ca-oxalate and Ca-phosphate as well as uric acid and xanthine was not possible (P ≥ 0.05). Conclusions Spectral detector CT allows for differentiation of kidney stones using semi-automatic segmentation and advanced image post-processing, even in low-dose imaging protocols. Received for publication January 25, 2018; and accepted for publication, after revision, February 18, 2018. Conflict of Interest: DM received honoraria for talks outside this specific project from Philips. All other authors declare that there is no conflict of interest. University Hospitals and Case Western Reserve University received institutional research support from Philips (not related to this article). Correspondence to: Nils Große Hokamp, MD, Department of Diagnostic and Interventional Radiology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany. E-mail: nils.grosse-hokamp@uk-koeln.de. Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
from Imaging via alkiviadis.1961 on Inoreader https://ift.tt/2GzkbSO
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives Adult sagittal posture is established during childhood and adolescence. A flattened or hypercurved spine is associated with poore...
-
Objective Outpatient parenteral antimicrobial therapy (OPAT) provides opportunities for improved cost savings, but in the UK, implementation...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
CBN News Cancer Took Most of His Tongue, but This Pastor Is Still Singing ... CBN News A youth pastor in San Diego, California is not ...
-
Family: Know the drill New Straits Times Online One of my sons had this so often that his tonsils were removed. ... However, for som...
-
The E3 ubiquitin ligase F-box and WD repeat domain containing 7 (FBW7α) functions as a putative tumor suppressor in non-small cell lung canc...
-
In this study, the changes in pH, organic acid content, acidity, and salinity of kimchi prepared at 0 days, stored 1–8 weeks at 4 and 10°C, ...
-
When you make pizza this good you are allowed to brag about it. Come try a square of the best pizza in Erie. Ohhh yeah, we have ice cream no...
-
The March for Science reflects the growing gap between slow, steady, vital scientific gains and quick-fire, opportunist US politics, says D...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου