The activity of human transglutaminase 2 (TG2), which forms protein cross-links between glutamine and lysine residues, is controlled by an allosteric disulfide bond. However, the mechanism by which this bond is formed, like many systems regulated by oxidative cysteine modifications, was not clear. A new study from Khosla and colleagues shows that TG2 is oxidatively inactivated by the protein disulfide isomerase ERp57, providing the first example of a defined and reversible protein-controlled redox switch and pointing to new strategies to inhibit undesirable TG2 activity in pathological states.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2CFxj2z
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
Liver ischemia reperfusion injury (IRI) is inevitable during transplantation and resection and is characterized by hepatocellular injury. Th...
-
Family: Know the drill New Straits Times Online One of my sons had this so often that his tonsils were removed. ... However, for som...
-
UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg. 2017 Apr 21;:1-9 Authors:...
-
Publication date: Available online 10 May 2017 Source: Journal of Dairy Science Author(s): R.E. Vibart, M. Tavendale, D. Otter, B.H. Schw...
-
P Chaitanya, D Praveen, Madhusudhan Reddy Indian Dermatology Online Journal 2017 8(3):205-207 Mucocele is a common salivary gland disord...
-
Abstract Background Cancer patients suffer in part because some health professionals prescribe or administer amounts of analgesics, namely...
-
Publication date: Available online 2 November 2017 Source: Journal of Dairy Science Author(s): R.C. Neves, B.M. Leno, M.D. Curler, M.J. T...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου