Abstract
“Organ reserve” refers to the ability of an organ to successfully return to its original physiological state following repeated episodes of stress. Clinical evidence shows that organ reserve correlates with the ability of older adults to cope with an added workload or stress, suggesting a role in the process of aging. Although organ reserve is well documented clinically, it is not clearly defined at the molecular level. Interestingly, several metabolic pathways exhibit excess metabolic capacities (e.g., bioenergetics pathway, antioxidants system, plasticity). These pathways comprise molecular components that have an excess of quantity and/or activity than that required for basic physiological demand in vivo (e.g., mitochondrial complex IV or glycolytic enzymes). We propose that the excess in mtDNA copy number and tandem DNA repeats of telomeres are additional examples of intrinsically embedded structural components that could comprise excess capacity. These excess capacities may grant intermediary metabolism the ability to instantly cope with, or manage, added workload or stress. Therefore, excess metabolic capacities could be viewed as an innate mechanism of adaptability that substantiates organ reserve and contributes to the cellular defense systems. If metabolic excess capacities or organ reserves are impaired or exhausted, the ability of the cell to cope with stress is reduced. Under these circumstances cell senescence, transformation, or death occurs. In this review, we discuss excess metabolic and structural capacities as integrated metabolic pathways in relation to organ reserve and cellular aging.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2EKr7YS
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου