Τετάρτη 22 Νοεμβρίου 2017

Dexmedetomidine Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury by Suppressing TLR4-MyD88-NF-κB Signaling

Objective. We previously reported that dexmedetomidine (DEX) offers cardioprotection against ischemia/reperfusion injury in rats. Here, we evaluated the role of toll-like receptors 4- (TLR4-) myeloid differentiation primary response 88- (MyD88-) nuclear factor-kappa B (NF-κB) signaling in DEX-mediated protection of cardiomyocytes using in vitro models of hypoxia/reoxygenation (H/R). Methods. The experiments were carried out in H9C2 cells and in primary neonatal rat cardiomyocytes. Cells pretreated with vehicle or DEX were exposed to hypoxia for 1 h followed by reoxygenation for 12 h. We analyzed cell viability and lactate dehydrogenase (LDH) activity and measured tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β mRNA levels, TLR4, MyD88, and nuclear NF-κB p65 protein expression and NF-κB p65 nuclear localization. TLR4 knock-down by TLR4 siRNA transfection and overexpression by TLR4 DNA transfection were used to further confirm our findings. Results. DEX protected against H/R-induced cell damage and inflammation, as evidenced by increased cell survival rates, decreased LDH activity, and decreased TNF-α, IL-6, and IL-1β mRNA levels, as well as TLR4 and NF-κB protein expression. TLR4 knock-down partially prevented cell damage following H/R injury, while overexpression of TLR4 abolished the DEX-mediated protective effects. Conclusions. DEX pretreatment protects rat cardiomyocytes against H/R injury. This effect is partly mediated by TLR4 suppression via TLR4-MyD88-NF-κB signaling.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jemGMw
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις