Abstract
The parasitic wasp, Trichogramma evanescens, is an extremely small insect, with a body length as small as 0.3 mm. To facilitate this miniaturization, their brains may have evolved to contain smaller neural components and/or reduced neural complexity than larger insects. Here, we study whether the size and number of neurons are reduced in the miniaturized brain of T. evanescens, focusing on neurons that express serotonin (5HT), octopamine (OA) and dopamine (DA). We provide the first description of the distribution, projection patterns and number of 5HT-, OA- and DA-like immunoreactive cell bodies in T. evanescens and compare our observations with descriptions of much larger insects. The brains of T. evanescens contain comparable numbers of monoaminergic neurons to those of larger insects. Serotonergic neurons appear to be especially conserved; most of the clusters contain a similar number of neurons to those described in Apis mellifera and Drosophila melanogaster. This maintained complexity may have been facilitated by miniaturization of neuron size. However, many dopaminergic and some octopaminergic neuron clusters in T. evanescens contain fewer neurons than in larger insects. Modification of the complexity of these monoaminergic systems may have been necessary to maintain neuron functionality during brain miniaturization in T. evanescens. Our results reveal some of the evolutionary adaptations that may enable behavioural and cognitive complexity with respect to miniaturized brains.
http://ift.tt/2rSmvKQ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου