Abstract
A xyloglucanase of the GH74 family was identified in the thermophilic fungus strain Myceliophthora thermophila VKPM F-244, and its gene sequence was optimized for cloning and expression in Pichia pastoris. The recombinant xyloglucanase MtXgh74 exhibited the highest activity toward tamarind seed xyloglucan with a K M value of 0.51 ± 0.06 mg/mL. The activities on barley β-glucan and carboxymethylcellulose were about 4 and 2%, respectively, compared to xyloglucan. Maximum xyloglucanase activity was observed at 70–75 °C and pH 6.5. After pre-incubation at 50 °C, pH 6.0 for 3 h, the enzyme retained 100% of its activity. The half-life of MtXgh74 at 60 °C, pH 6.0 was 40 min. In P. pastoris, MtXgh74 was produced in glycosylated form. The enzyme production in a 1 L bioreactor resulted in a yield of 118 U/mL or 5.3 g/L after 51 h fermentation. Kinetic studies of the hydrolysis product formation suggest that MtXgh74 has an endo-processive mode of action. The final products were the standard xyloglucan building blocks XXXG, XXLG, XLXG, and XLLG. Additionally, MtXgh74 hydrolyzed various linkages within the xyloglucan building blocks XXXG, XXLG, and XLXG (except XLLG) producing diverse low molecular weight oligosaccharides which may be identified by MALDI-TOF as XG, XX, XXG/GXX/XGX, XXX, LG, LX/XL, XLX/XXL, LLG, GXXXG, GXLLG, XLLGX. The unique combination of different activities within one enzyme along with its high thermostability and specificity toward xyloglucan makes MtXgh74 a promising candidate enzyme for industrial applications.
http://ift.tt/2pOwIcr
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου