Παρασκευή 5 Μαΐου 2017

The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension

Publication date: 4 May 2017
Source:Cell, Volume 169, Issue 4
Author(s): Judith H.I. Haarhuis, Robin H. van der Weide, Vincent A. Blomen, J. Omar Yáñez-Cuna, Mario Amendola, Marjon S. van Ruiten, Peter H.L. Krijger, Hans Teunissen, René H. Medema, Bas van Steensel, Thijn R. Brummelkamp, Elzo de Wit, Benjamin D. Rowland
The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin’s DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.

Graphical abstract

image

Teaser

Cohesin's dynamic association with DNA determines the length of chromatin loops and allows this complex to correctly structure chromosomes.


from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2qIN6sL
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις