Παρασκευή 5 Μαΐου 2017

An automatic segmentation method of a parameter-adaptive PCNN for medical images

Abstract

Purpose

Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision.

Methods

The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter \(\alpha \) for different kinds of images. Secondly, we acquire the parameter \(\beta \) according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset \(A\times S_{\mathrm{off}}\) to improve initial segmentation precision.

Results

Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726.

Conclusion

The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.



http://ift.tt/2pO6RBh

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις