Abstract
Purpose
Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision.
Methods
The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter \(\alpha \) for different kinds of images. Secondly, we acquire the parameter \(\beta \) according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset \(A\times S_{\mathrm{off}}\) to improve initial segmentation precision.
Results
Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726.
Conclusion
The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.
http://ift.tt/2pO6RBh
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου