Abstract
Background
Hepatic sinusoidal obstruction syndrome (SOS) during treatment of childhood acute lymphoblastic leukemia (ALL) has mainly been associated with 6-thioguanine. The occurrence of several SOS cases after the introduction of extended pegylated asparaginase (PEG-asparaginase) therapy in the Nordic Society of Paediatric Haematology and Oncology (NOPHO) ALL2008 protocol led us to hypothesize that PEG-asparaginase, combined with other drugs, may trigger SOS during 6-thioguanine-free maintenance therapy.
Procedure
In children with ALL treated in Denmark according to the NOPHO ALL2008 protocol, we investigated the risk of SOS during methotrexate (MTX)/6-mercaptopurine (6MP) maintenance therapy that included PEG-asparaginase until week 33 (randomized to two- vs. six-week intervals), as well as alternating high-dose MTX or vincristine/dexamethasone pulses every four weeks.
Results
Among 130 children receiving PEG-asparaginase biweekly, 29 developed SOS (≥2 criteria: hyperbilirubinemia, hepatomegaly, ascites, weight gain ≥2.5%, unexplained thrombocytopenia <75 × 109 l–1) at a median of 30 days (interquartile range [IQR]: 17–66) into maintenance (cumulative incidence: 27%). SOS cases fulfilling one, two, or three Ponte di Legno criteria were classified as possible (n = 2), probable (n = 8), or verified (n = 19) SOS, respectively. Twenty-six cases (90%) occurred during PEG-asparaginase treatment, including 21 (81%) within 14 days from the last chemotherapy pulse compared with the subsequent 14 days (P = 0.0025). Cytotoxic 6MP metabolites were significantly higher on PEG-asparaginase compared to after its discontinuation. Time-dependent Cox regression analysis showed increased SOS hazard ratio (HR) for erythrocyte levels of methylated 6MP metabolites (HR: 1.09 per 1,000 nmol/mmol hemoglobin increase, 95% confidence interval: 1.05–1.14). Six-week PEG-asparaginase intervals significantly reduced SOS-specific hazards (P < 0.01).
Conclusions
PEG-asparaginase increases cytotoxic 6MP metabolite levels and risk of SOS, potentially interacting with other chemotherapy pulses.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2o4k0Xc
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου