Τρίτη 25 Απριλίου 2017

Area Partition for Coastal Regions with Multiple UAS

Abstract

The paper presents a novel algorithmic approach that allows to tackle in a common framework the problems of area decomposition, partition and coverage for multiple heterogeneous Unmanned Aircraft Systems (UAS). The approach combines computational geometry techniques and graph search algorithms in a multi-UAS context. Even though literature provides several strategies for area decomposition like grid overlay decomposition or exact cellular methods, some fail to either successfully decompose complex areas, or the associated path generation strategies are not feasible. The proposed approach manages to perform an exact cellular decomposition of non-convex polygonal coastal areas and includes an attributes based schema for area partitioning. In particular, the proposed solution uses a Constrained Delaunay Triangulation (CDT) for computing a configuration space of a complex area containing obstacles. The cell size of each produced triangle is constrained to the maximum projected Field-of-View (FoV) of the sensor on-board each UAS. In addition, the resulting mesh is considered as an undirected graph, where each vertex has several attributes used for area partitioning and coverage in a multi-UAS context. Simulation results show how the algorithms can compute sound solutions in real complex coastal regions.



http://ift.tt/2oq4dSO

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις