Δευτέρα 6 Μαρτίου 2017

Minimum Weight Design of Sinusoidal Corrugated Web Beam Using Real-Coded Genetic Algorithms

Fundamental advantage of using corrugated web girder rather than plate girder reinforced with stiffeners is securing stability against shear buckling of web and unnecessary stiffeners despite the thinner web. Nonetheless, because shear buckling behavior of corrugated web is very complex, the design mechanism for beams and local, global, and interactive buckling problems should be considered in designing of its structural optimization for better economics and reasonableness. Therefore, this paper proposes a mathematical model for minimum weight design of sinusoidal web girder for securing better stability with smooth corrugation and aims at developing its optimum design program. The constraints for the optimum design were composed on the basis of the standards of EN 1993-1-5, DASt-R015, and DIN 18800, and the optimum program was coded in accordance with the standards based on Real-Coded Genetic Algorithms. The genetic operators for the developed program resulted in a stable solution with crossover probability between 12.5 and 50%, and the perturbation vector for outbreeding could obtain the best result with the model being applied of feasible design variable space of 20–30%. Additionally, the increase of yield strength resulted in decreased value of the objective function, and it was found through the change of the value of the constraint function that the thickness of web was an important factor in the optimum structural design.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2mVTzPa
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις