Abstract
We investigate the ultrastructural features and 3D electron tomography of chameleon (Chamaeleon calyptratus) which is a native of desert environments of Saudi Arabia. The corneas of the chameleon were fixed in 2.5% glutaraldehyde containing cuprolinic blue in sodium acetate buffer for electron microscopy and tomography, and observed under a JEOL 1400 transmission electron microscope. The thin cornea (21.92 μm) contained 28–30 collagen fibril lamellae. The middle stromal lamellae (from 13 to 19) contained keratocytes with a long cell process and filled with granular material. The CF diameter increased from lamella 1 (30.44 ± 1.03) to Lamella 5 (52.83 ± 2.00) then decreased towards the posterior stoma. The percentage of large CF diameters (55–65 nm) was very high in the lamellae L14 (38.8%) and L15 (85.7%). The mean PGs area of the posterior stroma (448.21 ± 24.84 nm2) was significantly larger than the mean PGs area of the anterior, (309.86 ± 8.2 nm2) and middle stroma 245.94 ± 8.28 nm2). 3D electron tomography showed the distribution of PGs around and over the CF. Variable diameters of CFs in the anterior stroma may provide compact lamellae which may restrict the low wavelength of light. Variable diameters of CFs in the anterior stroma may provide compact lamellae which may restrict the low wavelength of light. This accommodation function is achieved by bending of the cornea. During bending the anterior stroma was stretched and the posterior stroma was compressed due to the presence of small CFs. The middle stroma remained stiff due to the presence of large CFs. Large proteoglycans not only maintain hydration for a longer period of time, but also act as a lubricant to neutralise the shear forces in the anterior and posterior stroma during bending.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jyD3GR
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου