An electric vehicle routing problem with charging time and variable travel time is developed to address some operational issues such as range limitation and charging demand. The model is solved by using genetic algorithm to obtain the routes, the vehicle departure time at the depot, and the charging plan. Meanwhile, a dynamic Dijkstra algorithm is applied to find the shortest path between any two adjacent nodes along the routes. To prevent the depletion of all battery power and ensure safe operation in transit, electric vehicles with insufficient battery power can be repeatedly recharged at charging stations. The fluctuations in travel time are implemented to reflect a dynamic traffic environment. In conclusion, a large and realistic case study with a road network in the Beijing urban area is conducted to evaluate the model performance and the solution technology and analyze the results.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2iDfM4J
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain, but it also has several other functions in the cellular metaboli...
-
A new study published today in Genome Research models a first-of-its-kind approach to exploring the causes of cancer by combining cell and ...
-
Abstract Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthes...
-
Abstract Background Individualized medication reviews may improve our understanding of the distribution of CYP2C19 polymorphisms in ethn...
-
Objective. This meta-analysis aimed to compare the outcomes and postoperative complications between femtosecond laser-assisted cataract surg...
-
Publication date: January 2018 Source: International Journal of Biological Macromolecules, Volume 106 from #AlexandrosSfakianakis via...
-
ACS Nano DOI: 10.1021/acsnano.7b01926 from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2pOw4te via...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου