Παρασκευή 1 Ιουλίου 2016

Impaired Recall of Positional Memory following Chemogenetic Disruption of Place Field Stability

Publication date: Available online 30 June 2016
Source:Cell Reports
Author(s): Rong Zhao, Stacy D. Grunke, Madhusudhanan M. Keralapurath, Michael J. Yetman, Alexander Lam, Tang-Cheng Lee, Konstantinos Sousounis, Yongying Jiang, Deborah A. Swing, Lino Tessarollo, Daoyun Ji, Joanna L. Jankowsky
The neural network of the temporal lobe is thought to provide a cognitive map of our surroundings. Functional analysis of this network has been hampered by coarse tools that often result in collateral damage to other circuits. We developed a chemogenetic system to temporally control electrical input into the hippocampus. When entorhinal input to the perforant path was acutely silenced, hippocampal firing patterns became destabilized and underwent extensive remapping. We also found that spatial memory acquired prior to neural silencing was impaired by loss of input through the perforant path. Together, our experiments show that manipulation of entorhinal activity destabilizes spatial coding and disrupts spatial memory. Moreover, we introduce a chemogenetic model for non-invasive neuronal silencing that offers multiple advantages over existing strategies in this setting.

Graphical abstract

image

Teaser

Zhao et al. present a chemogenetic model for acute neuronal silencing. Suppression of the entorhinal cortex causes remapping of hippocampal CA1 place fields and impairs recall of spatial memory. The concurrent disruption of place fields and spatial recall suggest that stable cognitive maps remain critical for navigation in a familiar setting.


from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/297NirO
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις