BACKGROUND AND PURPOSE:
A lower radiation dose can have a detrimental effect on the quality of head CT images. The aim of this study performed in a pediatric population was to test whether an image-processing algorithm (Correlative Image Enhancement) based on the correlation among intensities of neighboring pixels can improve gray-white differentiation in head CTs.
MATERIALS AND METHODS:Sixty baseline head CT images with normal findings obtained from scans of 30 children were processed using Correlative Image Enhancement to produce corresponding enhanced images. Gray-white differentiation in baseline and enhanced images was assessed quantitatively by calculating the contrast-to-noise ratio and conspicuity in equivalent ROIs in gray and white matter. Two masked readers rated the images for visibility of gray-white differentiation on a 5-point Likert scale. Differences in both quantitative and qualitative measures of gray-white differentiation between baseline and enhanced images were tested for statistical significance. P values < .05 were considered significant.
RESULTS:Image processing resulted in improvement in the contrast-to-noise ratio (from 1.86 ± 0.94 to 2.26 ± 1.00, P = .02) as well as conspicuity (from 37.28 ± 11.56 to 46.4 ± 11.5, P < .001). This was accompanied by improved subjective visibility of gray-white differentiation as reported by both readers (P < .01).
CONCLUSIONS:Image processing using Correlative Image Enhancement had a beneficial effect on quantitative measures of gray-white differentiation. This translated into improved perception of gray-white differentiation by readers. Further studies are needed to assess the effect of such image processing on the detection of disease processes using head CTs.
from Imaging via alkiviadis.1961 on Inoreader http://ift.tt/2D4aomI
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου