We propose stochastic convex semidefinite programs (SCSDPs) to handle uncertain data in applications. For these models, we design an efficient inexact stochastic approximation (SA) method and prove the convergence, complexity, and robust treatment of the algorithm. We apply the inexact method for solving SCSDPs where the subproblem in each iteration is only solved approximately and show that it enjoys the similar iteration complexity as the exact counterpart if the subproblems are progressively solved to sufficient accuracy. Numerical experiments show that the method we proposed was effective for uncertain problem.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2G4kQZf
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of t...
-
Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take ca...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
1 abqls-210rm.html Read the latest Journal of Clinical Neurophysiology - Vol. 37, No. 1, January 2020.eml 2 agx3v-nxz96.html Read the late...
-
Ambergris Caye's best News Source. A weekly tourism and community oriented newspaper providing local news, stories, and reports on what...
-
by Yanwei Li, Haifeng Liu, Wei Zeng, Jing Wei An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear p...
-
http://ift.tt/2p41efZ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου