Τετάρτη 24 Ιανουαρίου 2018

Image Segmentation Using a Trimmed Likelihood Estimator in the Asymmetric Mixture Model Based on Generalized Gamma and Gaussian Distributions

Finite mixture model (FMM) is being increasingly used for unsupervised image segmentation. In this paper, a new finite mixture model based on a combination of generalized Gamma and Gaussian distributions using a trimmed likelihood estimator (GGMM-TLE) is proposed. GGMM-TLE combines the effectiveness of Gaussian distribution with the asymmetric capability of generalized Gamma distribution to provide superior flexibility for describing different shapes of observation data. Another advantage is that we consider the spatial information among neighbouring pixels by introducing Markov random field (MRF); thus, the proposed mixture model remains sufficiently robust with respect to different types and levels of noise. Moreover, this paper presents a new component-based confidence level ordering trimmed likelihood estimator, with a simple form, allowing GGMM-TLE to estimate the parameters after discarding the outliers. Thus, the proposed algorithm can effectively eliminate the disturbance of outliers. Furthermore, the paper proves the identifiability of the proposed mixture model in theory to guarantee that the parameter estimation procedures are well defined. Finally, an expectation maximization (EM) algorithm is included to estimate the parameters of GGMM-TLE by maximizing the log-likelihood function. Experiments on multiple public datasets demonstrate that GGMM-TLE achieves a superior performance compared with several existing methods in image segmentation tasks.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2Gb7NFn
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις