An acoustic metasurface made of a composite structure of cavity and membrane is proposed and numerically investigated. The target frequency is in the low frequency regime (570 Hz). The unit cells, which provide precise local phase modulation, are rather thin with thickness in the order around 1/5 of the working wavelength. The numerical simulations show that the designed metasurface can steer the reflected waves at will. By taking the advantage of this metasurface, an ultrathin planar acoustic axicon, acoustic lens, and acoustic nondiffracting Airy beam generator are realized. Our design method provides a new approach for the revolution of future acoustic devices.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2DPYuNJ
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
Liver ischemia reperfusion injury (IRI) is inevitable during transplantation and resection and is characterized by hepatocellular injury. Th...
-
Family: Know the drill New Straits Times Online One of my sons had this so often that his tonsils were removed. ... However, for som...
-
UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg. 2017 Apr 21;:1-9 Authors:...
-
Publication date: Available online 10 May 2017 Source: Journal of Dairy Science Author(s): R.E. Vibart, M. Tavendale, D. Otter, B.H. Schw...
-
P Chaitanya, D Praveen, Madhusudhan Reddy Indian Dermatology Online Journal 2017 8(3):205-207 Mucocele is a common salivary gland disord...
-
Abstract Background Cancer patients suffer in part because some health professionals prescribe or administer amounts of analgesics, namely...
-
Publication date: Available online 2 November 2017 Source: Journal of Dairy Science Author(s): R.C. Neves, B.M. Leno, M.D. Curler, M.J. T...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου