Publication date: 5 February 2018
Source:Gene, Volume 642
Author(s): Jose Pedro Fonseca, Luisa Hoffmann, Bianca Catarina Azeredo Cabral, Victor Hugo Giordano Dias, Marcio Rodrigues Miranda, Allan Cezar de Azevedo Martins, Clarissa Boschiero, Wanderley Rodrigues Bastos, Rosane Silva
Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon forest reserve that are probably caused by more than one environmental factors such as rhizosphere and soil depth.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jcSpPh
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives Adult sagittal posture is established during childhood and adolescence. A flattened or hypercurved spine is associated with poore...
-
Objective Outpatient parenteral antimicrobial therapy (OPAT) provides opportunities for improved cost savings, but in the UK, implementation...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
CBN News Cancer Took Most of His Tongue, but This Pastor Is Still Singing ... CBN News A youth pastor in San Diego, California is not ...
-
Family: Know the drill New Straits Times Online One of my sons had this so often that his tonsils were removed. ... However, for som...
-
The E3 ubiquitin ligase F-box and WD repeat domain containing 7 (FBW7α) functions as a putative tumor suppressor in non-small cell lung canc...
-
In this study, the changes in pH, organic acid content, acidity, and salinity of kimchi prepared at 0 days, stored 1–8 weeks at 4 and 10°C, ...
-
When you make pizza this good you are allowed to brag about it. Come try a square of the best pizza in Erie. Ohhh yeah, we have ice cream no...
-
The March for Science reflects the growing gap between slow, steady, vital scientific gains and quick-fire, opportunist US politics, says D...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου