Publication date: Available online 5 December 2017
Source:Microbiological Research
Author(s): Yongzhong Cao, Yongxiu Shen, Lingling Cheng, Xiaorong Zhang, Chao Wang, Yan Wang, Xiaohui Zhou, Guoxiang Chao, Yantao Wu
Salmonellae is one of the most important foodborne pathogens and becomes resistant to multiple antibiotics, which represents a significant challenge to food industry and public health. However, a molecular signature that can be used to distinguish antimicrobial resistance profile, particularly multi-drug resistance or extensive-drug resistance (XDR). In the current study, 168 isolates from the chicken and pork production chains and ill chickens were characterized by serotyping, antimicrobial susceptibility test, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The results showed that these isolates belonged to 13 serotypes, 14 multilocus sequence types (STs), 94 PFGE genotypes, and 70 antimicrobial resistant profiles. S. Enteritidis, S. Indiana, and S. Derby were the predominant serotypes, corresponding to the ST11, ST17, and ST40 clones, respectively and the PFGE Cluster A, Cluster E, and Cluster D, respectively. Among the ST11-S. Enteritidis (Cluster A) and the ST40-S. Derby (Cluster D) clones, the majority of isolates were resistant to 4-8 antimicrobial agents, whereas in the ST17S. Indiana (Cluster E) clone, isolates showed extensive-drug resistance (XDR) to 9–16 antimicrobial agents. The blaTEM-1-like gene was prevalent in the ST11 and ST17 clones corresponding to high ampicillin resistance. The blaTEM-1-like, blaCTX-M, blaOXA-1-like, sul1, aaC4, aac(6′)-1b, dfrA17, and floR gene complex was highly prevalent among isolates of ST17, corresponding to an XDR phenotype. These results demonstrated the association of the resistant phenotypes and genotypes with ST clone and PFGE cluster. Our results also indicated that the newly identified gene complex comprising blaTEM-1-like, blaCTX-M, blaOXA-1-like, sul1, aaC4, aac(6′)-1b, dfrA17, and floR, was responsible for the emergence of the ST17S. Indiana XDR clone. ST17 could be potentially used as a molecular signature to distinguish S. Indiana XDR clone.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2zQYoiL
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg. 2017 Apr 21;:1-9 Authors:...
-
Impact of habitat loss and fragmentation on reproduction, dispersal and species persistence for an endangered Chilean tree Abstract Survival...
-
Publication date: Available online 10 May 2017 Source: Journal of Dairy Science Author(s): R.E. Vibart, M. Tavendale, D. Otter, B.H. Schw...
-
Competency-based psychiatric education for Indian medical undergraduates Vijayalakshmi Pernenkil Archives of Mental Health 2019 20(1):1-2 Be...
-
Related Articles Developmental control of macrophage function. Curr Opin Immunol. 2017 Dec 13;50:64-74 Authors: Bonnardel J, Guillia...
-
Kajal Manchanda, Sandip Mohanty, Pallavi C Rohatgi Indian Dermatology Online Journal 2017 8(3):186-191 Introduction: Topical corticoster...
-
Summary The preventive effect of coffee on cancer at different sites has been reported, although the effect on all-sites cancer incidence ...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2tcPIjn via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου