Publication date: Available online 5 December 2017
Source:Microbiological Research
Author(s): Yongzhong Cao, Yongxiu Shen, Lingling Cheng, Xiaorong Zhang, Chao Wang, Yan Wang, Xiaohui Zhou, Guoxiang Chao, Yantao Wu
Salmonellae is one of the most important foodborne pathogens and becomes resistant to multiple antibiotics, which represents a significant challenge to food industry and public health. However, a molecular signature that can be used to distinguish antimicrobial resistance profile, particularly multi-drug resistance or extensive-drug resistance (XDR). In the current study, 168 isolates from the chicken and pork production chains and ill chickens were characterized by serotyping, antimicrobial susceptibility test, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The results showed that these isolates belonged to 13 serotypes, 14 multilocus sequence types (STs), 94 PFGE genotypes, and 70 antimicrobial resistant profiles. S. Enteritidis, S. Indiana, and S. Derby were the predominant serotypes, corresponding to the ST11, ST17, and ST40 clones, respectively and the PFGE Cluster A, Cluster E, and Cluster D, respectively. Among the ST11-S. Enteritidis (Cluster A) and the ST40-S. Derby (Cluster D) clones, the majority of isolates were resistant to 4-8 antimicrobial agents, whereas in the ST17S. Indiana (Cluster E) clone, isolates showed extensive-drug resistance (XDR) to 9–16 antimicrobial agents. The blaTEM-1-like gene was prevalent in the ST11 and ST17 clones corresponding to high ampicillin resistance. The blaTEM-1-like, blaCTX-M, blaOXA-1-like, sul1, aaC4, aac(6′)-1b, dfrA17, and floR gene complex was highly prevalent among isolates of ST17, corresponding to an XDR phenotype. These results demonstrated the association of the resistant phenotypes and genotypes with ST clone and PFGE cluster. Our results also indicated that the newly identified gene complex comprising blaTEM-1-like, blaCTX-M, blaOXA-1-like, sul1, aaC4, aac(6′)-1b, dfrA17, and floR, was responsible for the emergence of the ST17S. Indiana XDR clone. ST17 could be potentially used as a molecular signature to distinguish S. Indiana XDR clone.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2zQYoiL
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
To evaluate the effect of Recurrence Score® results (RS; Oncotype DX® multigene assay ODX) on treatment recommendations by Swiss multidiscip...
-
Abstract Objective To evaluate Chinese medicine (CM) formula Bazheng Powder (八正散) as an alternative therapeutic option for female patients...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
Abstract Soil conditioners can be used to compensate for the insufficient soil nutrition and organic matter (OM) of arable soils. However, ...
-
Objectives Adult sagittal posture is established during childhood and adolescence. A flattened or hypercurved spine is associated with poore...
-
Ocular Vestibular Evoked Myogenic Potentials: Where Are We Now? Objective: Over the last decade, ocular vestibular evoked myogenic potential...
-
Related Articles Screening for Atrial Fibrillation using Economical and accurate TechnologY (SAFETY)-a pilot study. BMJ Open. 2017 Ja...
-
Abstract Objective To study the effects of Astragalus polysaccharide (APS), the primary effective component of the Chinese herb medicine A...
-
Publication date: Available online 6 January 2018 Source: Current Problems in Diagnostic Radiology Author(s): Mark D. Kovacs, Maximilian...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου